BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11179680)

  • 21. The binding sites of class I release factor (eRF1) toward class II release factor (eRF3) in Euplotes octocarinatus.
    Chen J; Fu YJ; Yang BS; Wu YB; Liang AH
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1507-18. PubMed ID: 21938421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polypeptide release factor eRF1 from Tetrahymena thermophila: cDNA cloning, purification and complex formation with yeast eRF3.
    Karamyshev AL; Ito K; Nakamura Y
    FEBS Lett; 1999 Sep; 457(3):483-8. PubMed ID: 10471834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macronuclear DNA molecule.
    Grimm M; Brünen-Nieweler C; Junker V; Heckmann K; Beier H
    Nucleic Acids Res; 1998 Oct; 26(20):4557-65. PubMed ID: 9753721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The molecular basis of nuclear genetic code change in ciliates.
    Lozupone CA; Knight RD; Landweber LF
    Curr Biol; 2001 Jan; 11(2):65-74. PubMed ID: 11231122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1.
    Seit-Nebi A; Frolova L; Kisselev L
    EMBO Rep; 2002 Sep; 3(9):881-6. PubMed ID: 12189178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C-terminal 76 amino acids of eRF3 are not required for the binding of release factor eRF1a from Euplotes octocarinatus.
    Song L; Wang Y; Chai B; Wang W; Liang A
    J Genet Genomics; 2007 Jun; 34(6):486-90. PubMed ID: 17601607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Domain motions of class I release factor induced by binding with class II release factor from Euplotes octocarinatus.
    Chen J; Yang BS; Liang AH
    Biochemistry (Mosc); 2012 Aug; 77(8):896-900. PubMed ID: 22860911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Molecular mechanism of stop codon recognition by eRF1: a wobble hypothesis for peptide anticodons].
    Muramatsu T
    Tanpakushitsu Kakusan Koso; 2001 Dec; 46(15):2163-70. PubMed ID: 11762076
    [No Abstract]   [Full Text] [Related]  

  • 29. [Localization of polypeptides release factors and ribosome protein L11 in Euplotes octocarinatus].
    Chai B; Li N; Wang J; Shen Q; Zhang Z; Liang A
    Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):237-43. PubMed ID: 20432944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The alpha- and beta-tubulin genes of Euplotes octocarinatus.
    Liang A; Schmidt HJ; Heckmann K
    J Eukaryot Microbiol; 1994; 41(2):163-9. PubMed ID: 8167618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of the eukaryotic translation termination system: origins of release factors.
    Inagaki Y; Ford Doolittle W
    Mol Biol Evol; 2000 Jun; 17(6):882-9. PubMed ID: 10833194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition.
    Bertram G; Bell HA; Ritchie DW; Fullerton G; Stansfield I
    RNA; 2000 Sep; 6(9):1236-47. PubMed ID: 10999601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity.
    Inagaki Y; Blouin C; Doolittle WF; Roger AJ
    Nucleic Acids Res; 2002 Jan; 30(2):532-44. PubMed ID: 11788716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus.
    Meyer F; Schmidt HJ; Plümper E; Hasilik A; Mersmann G; Meyer HE; Engström A; Heckmann K
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3758-61. PubMed ID: 1902568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The macronuclear gamma-tubulin-encoding gene of Euplotes octocarinatus contains two introns and an in-frame TGA.
    Liang A; Heckmann K
    Gene; 1993 Dec; 136(1-2):319-22. PubMed ID: 8294024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ciliates use both variant and universal genetic codes: evidence of omnipotent eRF1s in the class Litostomatea.
    Kim OT; Sakurai A; Saito K; Ito K; Ikehara K; Harumoto T
    Gene; 2008 Jul; 417(1-2):51-8. PubMed ID: 18495382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition.
    Conard SE; Buckley J; Dang M; Bedwell GJ; Carter RL; Khass M; Bedwell DM
    RNA; 2012 Jun; 18(6):1210-21. PubMed ID: 22543865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-Based Energetics of Stop Codon Recognition by Eukaryotic Release Factor.
    Kumar A; Basu D; Satpati P
    J Chem Inf Model; 2017 Sep; 57(9):2321-2328. PubMed ID: 28825483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of stop codon recognition by eRF1: a wobble hypothesis for peptide anticodons.
    Muramatsu T; Heckmann K; Kitanaka C; Kuchino Y
    FEBS Lett; 2001 Jan; 488(3):105-9. PubMed ID: 11163755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast.
    Merritt GH; Naemi WR; Mugnier P; Webb HM; Tuite MF; von der Haar T
    Nucleic Acids Res; 2010 Sep; 38(16):5479-92. PubMed ID: 20444877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.