These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11181430)

  • 21. Dequalinium, a selective blocker of the slow afterhyperpolarization in rat sympathetic neurones in culture.
    Dunn PM
    Eur J Pharmacol; 1994 Feb; 252(2):189-94. PubMed ID: 8157060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of Ca2+-activated K+ current by clotrimazole in rat anterior pituitary GH3 cells.
    Wu SN; Li HF; Jan CR; Shen AY
    Neuropharmacology; 1999 Jul; 38(7):979-89. PubMed ID: 10428416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH modulation of currents that contribute to the medium and slow afterhyperpolarizations in rat CA1 pyramidal neurones.
    Kelly T; Church J
    J Physiol; 2004 Jan; 554(Pt 2):449-66. PubMed ID: 14608014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compounds that block both intermediate-conductance (IK(Ca)) and small-conductance (SK(Ca)) calcium-activated potassium channels.
    Malik-Hall M; Ganellin CR; Galanakis D; Jenkinson DH
    Br J Pharmacol; 2000 Apr; 129(7):1431-8. PubMed ID: 10742299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons.
    Bonansco C; Buño W
    Hippocampus; 2003; 13(1):150-63. PubMed ID: 12625465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons.
    Vatanparast J; Janahmadi M
    Brain Res; 2009 Feb; 1255():57-66. PubMed ID: 19100724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small (SKCa) Ca2+-activated K+ channels in cultured rat hippocampal pyramidal neurones.
    Selyanko AA; Sim JA; Brown DA
    Pflugers Arch; 1998 Dec; 437(1):161-3. PubMed ID: 9817802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of slow Ca(2+)-activated K(+) current by 4-aminopyridine in rat hippocampal CA1 pyramidal neurones.
    Andreasen M
    Br J Pharmacol; 2002 Feb; 135(4):1013-25. PubMed ID: 11861330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Somatic colocalization of rat SK1 and D class (Ca(v)1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons.
    Bowden SE; Fletcher S; Loane DJ; Marrion NV
    J Neurosci; 2001 Oct; 21(20):RC175. PubMed ID: 11588205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UCL 1684: a potent blocker of Ca2+ -activated K+ channels in rat adrenal chromaffin cells in culture.
    Dunn PM
    Eur J Pharmacol; 1999 Feb; 368(1):119-23. PubMed ID: 10096777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The antifungal imidazole clotrimazole and its major in vivo metabolite are potent blockers of the calcium-activated potassium channel in murine erythroleukemia cells.
    Rittenhouse AR; Vandorpe DH; Brugnara C; Alper SL
    J Membr Biol; 1997 May; 157(2):177-91. PubMed ID: 9151659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.
    Benton DC; Roxburgh CJ; Ganellin CR; Shiner MA; Jenkinson DH
    Br J Pharmacol; 1999 Jan; 126(1):169-78. PubMed ID: 10051133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blockade by sigma site ligands of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones.
    Church J; Fletcher EJ
    Br J Pharmacol; 1995 Dec; 116(7):2801-10. PubMed ID: 8680709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons.
    Stocker M; Krause M; Pedarzani P
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4662-7. PubMed ID: 10200319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines.
    Shah M; Haylett DG
    Br J Pharmacol; 2000 Feb; 129(4):627-30. PubMed ID: 10683185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further studies on bis-charged tetraazacyclophanes as potent inhibitors of small conductance Ca(2+)-activated K+ channels.
    Yang D; Arifhodzic L; Ganellin CR; Jenkinson DH
    Eur J Med Chem; 2013 May; 63():907-23. PubMed ID: 23685886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IK1 channels do not contribute to the slow afterhyperpolarization in pyramidal neurons.
    Wang K; Mateos-Aparicio P; Hönigsperger C; Raghuram V; Wu WW; Ridder MC; Sah P; Maylie J; Storm JF; Adelman JP
    Elife; 2016 Jan; 5():e11206. PubMed ID: 26765773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible inhibition of IK, IAHP, Ih and ICa currents by internally applied gluconate in rat hippocampal pyramidal neurones.
    Velumian AA; Zhang L; Pennefather P; Carlen PL
    Pflugers Arch; 1997 Jan; 433(3):343-50. PubMed ID: 9064651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells.
    Turner RW; Asmara H; Engbers JD; Miclat J; Rizwan AP; Sahu G; Zamponi GW
    Channels (Austin); 2016 Jul; 10(4):313-9. PubMed ID: 26950800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.
    Dunn PM
    J Membr Biol; 1998 Sep; 165(2):133-43. PubMed ID: 9745001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.