These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 11181717)

  • 1. The hypocotyl chloroplast plays a role in phototropic bending of Arabidopsis seedlings: developmental and genetic evidence.
    Jin X; Zhu J; Zeiger E
    J Exp Bot; 2001 Jan; 52(354):91-7. PubMed ID: 11181717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2.
    Kagawa T; Kimura M; Wada M
    Plant Cell Physiol; 2009 Oct; 50(10):1774-85. PubMed ID: 19689999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.
    Stone BB; Stowe-Evans EL; Harper RM; Celaya RB; Ljung K; Sandberg G; Liscum E
    Mol Plant; 2008 Jan; 1(1):129-44. PubMed ID: 20031920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing.
    Caspar T; Pickard BG
    Planta; 1989; 177():185-97. PubMed ID: 11539758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phototropins and blue light-dependent calcium signaling in higher plants.
    Harada A; Shimazaki K
    Photochem Photobiol; 2007; 83(1):102-11. PubMed ID: 16906793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutants of Arabidopsis thaliana with altered phototropism.
    Khurana JP; Poff KL
    Planta; 1989; 178():400-6. PubMed ID: 11537724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both LOV1 and LOV2 domains of phototropin2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana (Brassicaceae).
    Suetsugu N; Kong SG; Kasahara M; Wada M
    Am J Bot; 2013 Jan; 100(1):60-9. PubMed ID: 23196397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.
    Allen T; Ingles PJ; Praekelt U; Smith H; Whitelam GC
    Plant J; 2006 May; 46(4):641-8. PubMed ID: 16640600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue light-induced chloroplast avoidance and phototropic responses exhibit distinct dose dependency of PHOTOTROPIN2 in Arabidopsis thaliana.
    Kimura M; Kagawa T
    Photochem Photobiol; 2009; 85(5):1260-4. PubMed ID: 19453386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells.
    Iwabuchi K; Sakai T; Takagi S
    Plant Cell Physiol; 2007 Sep; 48(9):1291-8. PubMed ID: 17652112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis.
    Willige BC; Ahlers S; Zourelidou M; Barbosa IC; Demarsy E; Trevisan M; Davis PA; Roelfsema MR; Hangarter R; Fankhauser C; Schwechheimer C
    Plant Cell; 2013 May; 25(5):1674-88. PubMed ID: 23709629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses.
    Kong SG; Kinoshita T; Shimazaki K; Mochizuki N; Suzuki T; Nagatani A
    Plant J; 2007 Sep; 51(5):862-73. PubMed ID: 17662032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic separation of phototropism and blue light inhibition of stem elongation.
    Liscum E; Young JC; Poff KL; Hangarter RP
    Plant Physiol; 1992 Sep; 100(1):267-71. PubMed ID: 11538049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clathrin regulates blue light-triggered lateral auxin distribution and hypocotyl phototropism in Arabidopsis.
    Zhang Y; Yu Q; Jiang N; Yan X; Wang C; Wang Q; Liu J; Zhu M; Bednarek SY; Xu J; Pan J
    Plant Cell Environ; 2017 Jan; 40(1):165-176. PubMed ID: 27770560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Characterization of Phototropism in Arabidopsis Seedlings.
    Haga K; Kimura T
    Methods Mol Biol; 2019; 1924():3-17. PubMed ID: 30694462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CP3 is involved in negative regulation of phytochrome A signalling in Arabidopsis.
    Quinn MH; Oliverio K; Yanovsky MJ; Casal JJ
    Planta; 2002 Aug; 215(4):557-64. PubMed ID: 12172837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional properties of the coleoptile chloroplast: Photosynthesis and photosensory transduction.
    Zhu J; Zeiger R; Zeiger E
    Photosynth Res; 1995 May; 44(1-2):207-19. PubMed ID: 24307039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phenotype of Arabidopsis thaliana det1 mutants suggests a role for cytokinins in greening.
    Chory J; Aguilar N; Peto CA
    Symp Soc Exp Biol; 1991; 45():21-9. PubMed ID: 1843409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.