These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 11181723)
1. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Sato Y; Murakami T; Funatsuki H; Matsuba S; Saruyama H; Tanida M J Exp Bot; 2001 Jan; 52(354):145-51. PubMed ID: 11181723 [TBL] [Abstract][Full Text] [Related]
2. [Induction of chilling tolerance and heat shock protein synthesis in rice seedlings by heat shock]. Huang SZ; Huang XF; Lin XD; Zhang YS; Liu J; Fu JR Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Apr; 30(2):189-94. PubMed ID: 15599046 [TBL] [Abstract][Full Text] [Related]
3. [Transferring the Suaeda salsa glutathione S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings]. Zhao FY; Wang XY; Zhao YX; Zhang H Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):231-8. PubMed ID: 16622324 [TBL] [Abstract][Full Text] [Related]
4. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. Hong CY; Hsu YT; Tsai YC; Kao CH J Exp Bot; 2007; 58(12):3273-83. PubMed ID: 17916638 [TBL] [Abstract][Full Text] [Related]
5. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143 [TBL] [Abstract][Full Text] [Related]
6. Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Yu X; Peng YH; Zhang MH; Shao YJ; Su WA; Tang ZC Cell Res; 2006 Jun; 16(6):599-608. PubMed ID: 16775631 [TBL] [Abstract][Full Text] [Related]
7. The chilling injury induced by high root temperature in the leaves of rice seedlings. Suzuki K; Nagasuga K; Okada M Plant Cell Physiol; 2008 Mar; 49(3):433-42. PubMed ID: 18252732 [TBL] [Abstract][Full Text] [Related]
8. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. Huang J; Wang JF; Wang QH; Zhang HS DNA Seq; 2005 Apr; 16(2):130-6. PubMed ID: 16147864 [TBL] [Abstract][Full Text] [Related]
9. Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. Wan B; Lin Y; Mou T FEBS Lett; 2007 Mar; 581(6):1179-89. PubMed ID: 17336300 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant responses of chickpea plants subjected to boron toxicity. Ardic M; Sekmen AH; Tokur S; Ozdemir F; Turkan I Plant Biol (Stuttg); 2009 May; 11(3):328-38. PubMed ID: 19470104 [TBL] [Abstract][Full Text] [Related]
11. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets. Suzuki K; Aoki N; Matsumura H; Okamura M; Ohsugi R; Shimono H Plant Cell Environ; 2015 Jul; 38(7):1255-74. PubMed ID: 25496090 [TBL] [Abstract][Full Text] [Related]
12. [cDNA cloning and expression of a cytosolic small heat shock protein gene (CaHSP18) from Capsicum annuum]. Guo SJ; Chen N; Guo P; Meng QW Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):409-16. PubMed ID: 16121013 [TBL] [Abstract][Full Text] [Related]
13. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. Kawakami A; Sato Y; Yoshida M J Exp Bot; 2008; 59(4):793-802. PubMed ID: 18319240 [TBL] [Abstract][Full Text] [Related]
14. Changes in translatable mRNA populations induced in rice seedlings by exposure to freeze-thaw stress. Higo K; Higo H Biochem Mol Biol Int; 1993 Mar; 29(3):403-9. PubMed ID: 8485458 [TBL] [Abstract][Full Text] [Related]
15. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326 [TBL] [Abstract][Full Text] [Related]
16. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Nishizawa A; Yabuta Y; Yoshida E; Maruta T; Yoshimura K; Shigeoka S Plant J; 2006 Nov; 48(4):535-47. PubMed ID: 17059409 [TBL] [Abstract][Full Text] [Related]
17. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Torres NL; Cho K; Shibato J; Hirano M; Kubo A; Masuo Y; Iwahashi H; Jwa NS; Agrawal GK; Rakwal R Electrophoresis; 2007 Dec; 28(23):4369-81. PubMed ID: 17987633 [TBL] [Abstract][Full Text] [Related]
18. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit. Sapitnitskaya M; Maul P; McCollum GT; Guy CL; Weiss B; Samach A; Porat R J Exp Bot; 2006; 57(12):2943-53. PubMed ID: 16908505 [TBL] [Abstract][Full Text] [Related]
19. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Huang J; Sun SJ; Xu DQ; Yang X; Bao YM; Wang ZF; Tang HJ; Zhang H Biochem Biophys Res Commun; 2009 Nov; 389(3):556-61. PubMed ID: 19751706 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]