BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11181723)

  • 1. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings.
    Sato Y; Murakami T; Funatsuki H; Matsuba S; Saruyama H; Tanida M
    J Exp Bot; 2001 Jan; 52(354):145-51. PubMed ID: 11181723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Induction of chilling tolerance and heat shock protein synthesis in rice seedlings by heat shock].
    Huang SZ; Huang XF; Lin XD; Zhang YS; Liu J; Fu JR
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Apr; 30(2):189-94. PubMed ID: 15599046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Transferring the Suaeda salsa glutathione S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings].
    Zhao FY; Wang XY; Zhao YX; Zhang H
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):231-8. PubMed ID: 16622324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl.
    Hong CY; Hsu YT; Tsai YC; Kao CH
    J Exp Bot; 2007; 58(12):3273-83. PubMed ID: 17916638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomic approach in analyzing heat-responsive proteins in rice leaves.
    Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH
    Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery.
    Yu X; Peng YH; Zhang MH; Shao YJ; Su WA; Tang ZC
    Cell Res; 2006 Jun; 16(6):599-608. PubMed ID: 16775631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chilling injury induced by high root temperature in the leaves of rice seedlings.
    Suzuki K; Nagasuga K; Okada M
    Plant Cell Physiol; 2008 Mar; 49(3):433-42. PubMed ID: 18252732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid.
    Huang J; Wang JF; Wang QH; Zhang HS
    DNA Seq; 2005 Apr; 16(2):130-6. PubMed ID: 16147864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses.
    Wan B; Lin Y; Mou T
    FEBS Lett; 2007 Mar; 581(6):1179-89. PubMed ID: 17336300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant responses of chickpea plants subjected to boron toxicity.
    Ardic M; Sekmen AH; Tokur S; Ozdemir F; Turkan I
    Plant Biol (Stuttg); 2009 May; 11(3):328-38. PubMed ID: 19470104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets.
    Suzuki K; Aoki N; Matsumura H; Okamura M; Ohsugi R; Shimono H
    Plant Cell Environ; 2015 Jul; 38(7):1255-74. PubMed ID: 25496090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [cDNA cloning and expression of a cytosolic small heat shock protein gene (CaHSP18) from Capsicum annuum].
    Guo SJ; Chen N; Guo P; Meng QW
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):409-16. PubMed ID: 16121013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance.
    Kawakami A; Sato Y; Yoshida M
    J Exp Bot; 2008; 59(4):793-802. PubMed ID: 18319240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in translatable mRNA populations induced in rice seedlings by exposure to freeze-thaw stress.
    Higo K; Higo H
    Biochem Mol Biol Int; 1993 Mar; 29(3):403-9. PubMed ID: 8485458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.
    Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y
    Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress.
    Nishizawa A; Yabuta Y; Yoshida E; Maruta T; Yoshimura K; Shigeoka S
    Plant J; 2006 Nov; 48(4):535-47. PubMed ID: 17059409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama.
    Torres NL; Cho K; Shibato J; Hirano M; Kubo A; Masuo Y; Iwahashi H; Jwa NS; Agrawal GK; Rakwal R
    Electrophoresis; 2007 Dec; 28(23):4369-81. PubMed ID: 17987633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit.
    Sapitnitskaya M; Maul P; McCollum GT; Guy CL; Weiss B; Samach A; Porat R
    J Exp Bot; 2006; 57(12):2943-53. PubMed ID: 16908505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245.
    Huang J; Sun SJ; Xu DQ; Yang X; Bao YM; Wang ZF; Tang HJ; Zhang H
    Biochem Biophys Res Commun; 2009 Nov; 389(3):556-61. PubMed ID: 19751706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.