BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11181761)

  • 1. Chromatographic resolution and quantitative assay of CNS tissue sphingoids and sphingolipids.
    Dasgupta S; Hogan EL
    J Lipid Res; 2001 Feb; 42(2):301-8. PubMed ID: 11181761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic Separation and Quantitation of Sphingolipids from the Central Nervous System or Any Other Biological Tissue.
    Ray SK; Dasgupta S
    Methods Mol Biol; 2024; 2761():149-157. PubMed ID: 38427236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingolipid profile in the CNS of the twitcher (globoid cell leukodystrophy) mouse: a lipidomics approach.
    Esch SW; Williams TD; Biswas S; Chakrabarty A; LeVine SM
    Cell Mol Biol (Noisy-le-grand); 2003 Jul; 49(5):779-87. PubMed ID: 14528915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of complex mixtures of sphingolipids in the stratum corneum by reversed-phase high-performance liquid chromatography and atmospheric pressure photospray ionization mass spectrometry.
    Muñoz-Garcia A; Ro J; Brown JC; Williams JB
    J Chromatogr A; 2006 Nov; 1133(1-2):58-68. PubMed ID: 17027012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of sphingoid bases by reversed-phase high performance liquid chromatography.
    Jungalwala FB; Evans JE; Bremer E; McCluer RH
    J Lipid Res; 1983 Oct; 24(10):1380-8. PubMed ID: 6644188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol.
    Farwanah H; Wirtz J; Kolter T; Raith K; Neubert RH; Sandhoff K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):2976-82. PubMed ID: 19646933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipid extraction and analysis by thin-layer chromatography.
    van Echten-Deckert G
    Methods Enzymol; 2000; 312():64-79. PubMed ID: 11070863
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification and initial characterizations of free, glycosylated, and phosphorylated ceramides of Paramecium.
    Kaneshiro ES; Jayasimhulu K; Sul D; Erwin JA
    J Lipid Res; 1997 Dec; 38(12):2399-410. PubMed ID: 9458264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges.
    Bodennec J; Koul O; Aguado I; Brichon G; Zwingelstein G; Portoukalian J
    J Lipid Res; 2000 Sep; 41(9):1524-31. PubMed ID: 10974060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingolipids of a cestode Metroliasthes coturnix.
    Nishimura K; Suzuki A; Kino H
    Biochim Biophys Acta; 1991 Nov; 1086(2):141-50. PubMed ID: 1932097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of reversed-phase nano liquid chromatography conditions by using reversed-phase thin layer chromatography based on Hansen solubility parameters for the analysis of amphiphilic glycosylsphingolipid transformations.
    Kanie Y; Taniuchi M; Kanie O
    J Chromatogr A; 2018 Jan; 1534():123-129. PubMed ID: 29290400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation and identification of major plant sphingolipid classes from leaves.
    Markham JE; Li J; Cahoon EB; Jaworski JG
    J Biol Chem; 2006 Aug; 281(32):22684-94. PubMed ID: 16772288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of coumarins from Archangelica officinalis in high-performance liquid chromatography and thin-layer chromatography systems.
    Hawryl MA; Soczewinski E; Dzido TH
    J Chromatogr A; 2000 Jul; 886(1-2):75-81. PubMed ID: 10950277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.
    Mroczek T
    J Pharm Biomed Anal; 2016 Sep; 129():155-162. PubMed ID: 27424196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microanalysis of complex tissue lipids by high-performance thin-layer chromatography.
    Yao JK; Rastetter GM
    Anal Biochem; 1985 Oct; 150(1):111-6. PubMed ID: 4083472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-mediated analysis for sugar, fatty acid, and sphingoid compositions of glycosphingolipids.
    Itonori S; Takahashi M; Kitamura T; Aoki K; Dulaney JT; Sugita M
    J Lipid Res; 2004 Mar; 45(3):574-81. PubMed ID: 14679161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of fluorescence-labeled GM1 and sphingomyelin by the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase as substrates for assay of sphingolipid-degrading enzymes and for detection of sphingolipid-binding proteins.
    Nakagawa T; Tani M; Kita K; Ito M
    J Biochem; 1999 Sep; 126(3):604-11. PubMed ID: 10467178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatographic resolution of p-nitrobenzyloxyamine derivatives of brain gangliosides.
    Traylor TD; Koontz DA; Hogan EL
    J Chromatogr; 1983 Jan; 272(1):9-20. PubMed ID: 6841549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipids of influenza viruses.
    Huang RT
    Biochim Biophys Acta; 1976 Jan; 424(1):90-7. PubMed ID: 1252485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid quantitative analysis of sphingolipids in seafood using HPLC with evaporative light-scattering detection: its application in tissue distribution of sphingolipids in fish.
    Duan J; Sugawara T; Hirata T
    J Oleo Sci; 2010; 59(9):509-13. PubMed ID: 20720382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.