These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 111818)

  • 1. [Energy transfer from tryptophan to 1, N6-ethenoadenosine in frozen aqueous solution].
    Hélène C; Montenay-Garestier T
    C R Seances Acad Sci D; 1979 Jan; 288(1):143-6. PubMed ID: 111818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton transfer kinetics in the lowest excited state of 1,N6-ethenoadenosine as revealed by fluorescence lifetime measurements.
    Nishimura Y; Takahashi S; Tsuboi M; Kuramochi T; Inoue Y
    Nucleic Acids Symp Ser; 1979; (6):s97-100. PubMed ID: 576119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence studies on the complex formation between poly(rA) containing 1,N6-ethenoadenosine and poly(rU).
    Kubota Y; Fujisaki Y; Steiner RF
    Nucleic Acids Symp Ser; 1985; (16):21-4. PubMed ID: 4088872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregate formation in frozen aqueous solutions of nucleic acid derivatives and aromatic amino acids. Energy transfer and complex formation.
    Montenay-Garestier T; Hélène C
    J Agric Food Chem; 1973; 21(1):11-6. PubMed ID: 4682325
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamics of L-tryptophan in aqueous solution by simultaneous laser induced fluorescence (LIF) and photoacoustic spectroscopy (PAS).
    Kamath SD; Kartha VB; Mahato KK
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):187-94. PubMed ID: 17822948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence studies of 1,N6-ethenoadenosine triphosphate bound to G-actin: the nucleotide base is inaccessible to water.
    Harvey SC; Cheung HC
    Biochem Biophys Res Commun; 1976 Dec; 73(4):865-8. PubMed ID: 15625854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide.
    Ando T; Asai H
    J Biochem; 1980 Jul; 88(1):255-64. PubMed ID: 7410337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal and molecular structure of a derivative of 1,N6-ethenoadenosine hydrochloride. Dimensions and molecular interactions of the fluorescent epsilon-adenosine (epsilon-ado) system.
    Wang AH; Dammann LG; Barrio JR; Paul IC
    J Am Chem Soc; 1974 Feb; 96(4):1205-12. PubMed ID: 4816470
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic and static quenching of 1,N6-ethenoadenine fluorescence in nicotinamide 1,N6-ethenoadenine dinucleotide and in 1,N6-etheno-9-(3-(indol-3-yl) propyl) adenine.
    Gruber BA; Leonard NJ
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3966-9. PubMed ID: 172889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A close look at fluorescence quenching of organic dyes by tryptophan.
    Doose S; Neuweiler H; Sauer M
    Chemphyschem; 2005 Nov; 6(11):2277-85. PubMed ID: 16224752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transfer and fluorescence quenching in complexes of polymethine dyes with human serum albumin.
    Tatikolov AS; Costa SM
    Photochem Photobiol; 2004; 80(2):250-6. PubMed ID: 15362936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence of human liver alanine aminopeptidase.
    Garner CW; Behal FJ
    Physiol Chem Phys; 1977; 9(1):47-54. PubMed ID: 143669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence of tryptophan residues in firefly luciferases and enzyme--substrate complexes.
    Chudinova EA; Dementieva EI; Brovko LY; Savitskii AP; Ugarova NN
    Biochemistry (Mosc); 1999 Oct; 64(10):1097-103. PubMed ID: 10561553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant energy transfer from proteins to pyridine nucleotides in mitochondria.
    Vekshin NL
    Biochemistry (Mosc); 1998 Sep; 63(9):1110-3. PubMed ID: 9795284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence studies of polyriboadenylic acid and dinucleoside monophosphates containing 1,N6-ethenoadenosine.
    Kubota Y; Sanjoh A; Fujisaki Y
    Nucleic Acids Symp Ser; 1982; (11):277-80. PubMed ID: 6963952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward understanding tryptophan fluorescence in proteins.
    Chen Y; Barkley MD
    Biochemistry; 1998 Jul; 37(28):9976-82. PubMed ID: 9665702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond time- and wavelength-resolved fluorescence and absorption spectroscopic study of the excited states of adenosine and an adenine oligomer.
    Kwok WM; Ma C; Phillips DL
    J Am Chem Soc; 2006 Sep; 128(36):11894-905. PubMed ID: 16953630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer between nucleic acid bases and tryptophan in aggregates and in oligopeptide-nucleic acid complexes.
    Helene C
    Photochem Photobiol; 1973 Oct; 18(4):255-62. PubMed ID: 4355751
    [No Abstract]   [Full Text] [Related]  

  • 20. Fluorescence decay studies of modified dinucleoside monophosphates containing 1-N6-ethenoadenosine.
    Kubota Y; Motoda Y; Fujisaki Y; Steiner RF
    Biophys Chem; 1983 Oct; 18(3):225-32. PubMed ID: 6580048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.