These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 11181911)

  • 21. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus.
    Le Ray D; Fernández De Sevilla D; Belén Porto A; Fuenzalida M; Buño W
    Hippocampus; 2004; 14(8):1011-25. PubMed ID: 15390171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Neural mechanism underlying generation of synchronous oscillations in hippocampal network].
    Fujiwara-Tsukamoto Y; Isomura Y
    Brain Nerve; 2008 Jul; 60(7):755-62. PubMed ID: 18646615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons.
    Hellstrom IC; Danik M; Luheshi GN; Williams S
    Hippocampus; 2005; 15(5):656-64. PubMed ID: 15889405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of mu-opioid receptor modulation on GABAB receptor synaptic function in hippocampal CA1.
    McQuiston AR
    J Neurophysiol; 2007 Mar; 97(3):2301-11. PubMed ID: 17215502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BDNF occludes GABA receptor-mediated inhibition of GABA release in rat hippocampal CA1 pyramidal neurons.
    Mizoguchi Y; Kitamura A; Wake H; Ishibashi H; Watanabe M; Nishimaki T; Nabekura J
    Eur J Neurosci; 2006 Oct; 24(8):2135-44. PubMed ID: 17074039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective blockade of Ca2+ permeable AMPA receptors in CA1 area of rat hippocampus.
    Buldakova SL; Kim KK; Tikhonov DB; Magazanik LG
    Neuroscience; 2007 Jan; 144(1):88-99. PubMed ID: 17097234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relation between bicarbonate concentration and voltage dependence of sodium currents in freshly isolated CA1 neurons of the rat.
    Bruehl C; Witte OW
    J Neurophysiol; 2003 May; 89(5):2489-98. PubMed ID: 12611966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. alpha-Chloralose diminishes gamma oscillations in rat hippocampal slices.
    Wang K; Zheng C; Wu C; Gao M; Liu Q; Yang K; Ellsworth K; Xu L; Wu J
    Neurosci Lett; 2008 Aug; 441(1):66-71. PubMed ID: 18597935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 4-aminopyridine on synaptic transmission in rat hippocampal slices.
    Gu Y; Ge SY; Ruan DY
    Brain Res; 2004 May; 1006(2):225-32. PubMed ID: 15051526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3.
    Romo-Parra H; Vivar C; Maqueda J; Morales MA; Gutiérrez R
    J Neurophysiol; 2003 Jun; 89(6):3155-67. PubMed ID: 12611945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of kainate on the synaptic transmission in hippocampal CA1 region.
    Liu ZL; Xu RX; Jiang XD; Yin Z; Luo CY; Du MX; Zou YX
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Jul; 23(7):652-4. PubMed ID: 12865211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of extracellular potassium in the epileptogenic transformation of recurrent GABAergic inhibition.
    Bihi RI; Jefferys JG; Vreugdenhil M
    Epilepsia; 2005; 46 Suppl 5():64-71. PubMed ID: 15987256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes of K+ -Cl- cotransporter 2 (KCC2) and circuit activity in propofol-induced impairment of long-term potentiation in rat hippocampal slices.
    Wang W; Wang H; Gong N; Xu TL
    Brain Res Bull; 2006 Oct; 70(4-6):444-9. PubMed ID: 17027780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability.
    Bieda MC; MacIver MB
    J Neurophysiol; 2004 Sep; 92(3):1658-67. PubMed ID: 15140905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers.
    McQuiston AR; Saggau P
    J Neurophysiol; 2003 Sep; 90(3):1936-48. PubMed ID: 12750411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Chronic treatment with GABA A receptor blockers increases efficacy of GABAergic synaptic transmission in rat hippocampal neuron cultures].
    Ivanova SIu; Kostiuk PH
    Fiziol Zh (1994); 2004; 50(4):10-5. PubMed ID: 15460022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calexcitin transformation of GABAergic synapses: from excitation filter to amplifier.
    Sun MK; Nelson TJ; Xu H; Alkon DL
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):7023-8. PubMed ID: 10359832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.