BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11182131)

  • 1. An extensometer for global measurement of bone strain suitable for use in vivo in humans.
    Perusek GP; Davis BL; Sferra JJ; Courtney AC; D'Andrea SE
    J Biomech; 2001 Mar; 34(3):385-91. PubMed ID: 11182131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of cancellous bone strain during mechanical tests using a new extensometer device.
    Boyd S; Shrive N; Wohl G; Müller R; Zernicke R
    Med Eng Phys; 2001 Jul; 23(6):411-6. PubMed ID: 11551817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method suitable for in vivo measurement of bone strain in humans.
    Hoshaw SJ; Fyhrie DP; Takano Y; Burr DB; Milgrom C
    J Biomech; 1997 May; 30(5):521-4. PubMed ID: 9109565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The underestimation of Young's modulus in compressive testing of cancellous bone specimens.
    Odgaard A; Linde F
    J Biomech; 1991; 24(8):691-8. PubMed ID: 1918092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensometer for Determining Strains on a Tensile and Torsion Simultaneous Load.
    Goanta V
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing bone strain distributions in vivo using three triple rosette strain gages.
    Gross TS; McLeod KJ; Rubin CT
    J Biomech; 1992 Sep; 25(9):1081-7. PubMed ID: 1517269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-light extensometer for the assessment of the mechanical properties of the human skin in vivo.
    Jacquet E; Joly S; Chambert J; Rekik K; Sandoz P
    Skin Res Technol; 2017 Nov; 23(4):531-538. PubMed ID: 28349598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading.
    Macione J; Nesbitt S; Pandit V; Kotha S
    Rev Sci Instrum; 2012 Feb; 83(2):025113. PubMed ID: 22380131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo surface strain and stereology of the frontal and maxillary bones of sheep: implications for the structural design of the mammalian skull.
    Thomason JJ; Grovum LE; Deswysen AG; Bignell WW
    Anat Rec; 2001 Dec; 264(4):325-38. PubMed ID: 11745088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Extensometer Analysis of Martensite Band Nucleation, Growth, and Strain Softening in Pseudoelastic NiTi Subjected to Different Load Cases.
    Elibol C; Wagner MF
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30126114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What Are the Biomechanical Properties of the Taylor Spatial Frame™?
    Henderson DJ; Rushbrook JL; Harwood PJ; Stewart TD
    Clin Orthop Relat Res; 2017 May; 475(5):1472-1482. PubMed ID: 27896679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone strain gage data and theoretical models of functional adaptation.
    Mikić B; Carter DR
    J Biomech; 1995 Apr; 28(4):465-9. PubMed ID: 7738056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techniques for implementing an in vivo bone strain gage system.
    Caler WE; Carter DR; Harris WH
    J Biomech; 1981; 14(7):503-7. PubMed ID: 7276010
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantification of a rat tail vertebra model for trabecular bone adaptation studies.
    Guo XE; Eichler MJ; Takai E; Kim CH
    J Biomech; 2002 Mar; 35(3):363-8. PubMed ID: 11858812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital image correlation techniques for strain measurement in a variety of biomechanical test models.
    Hensley S; Christensen M; Small S; Archer D; Lakes E; Rogge R
    Acta Bioeng Biomech; 2017; 19(3):187-195. PubMed ID: 29205227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro comparison of bone deformation measured with surface and staple mounted strain gauges.
    Arndt A; Westblad P; Ekenman I; Halvorsen K; Lundberg A
    J Biomech; 1999 Dec; 32(12):1359-63. PubMed ID: 10569716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-accuracy optical extensometer realized by two parallel cameras and two-dimensional digital image correlation.
    Zhu F; Gu J; Lu R; Bai P; Lei D; Kang X
    Appl Opt; 2020 Dec; 59(34):10813-10825. PubMed ID: 33361902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.