BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11182321)

  • 1. Profiling the specific reactivity of the proteome with non-directed activity-based probes.
    Adam GC; Cravatt BF; Sorensen EJ
    Chem Biol; 2001 Jan; 8(1):81-95. PubMed ID: 11182321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping enzyme active sites in complex proteomes.
    Adam GC; Burbaum J; Kozarich JW; Patricelli MP; Cravatt BF
    J Am Chem Soc; 2004 Feb; 126(5):1363-8. PubMed ID: 14759193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-based probes for protein tyrosine phosphatases.
    Kumar S; Zhou B; Liang F; Wang WQ; Huang Z; Zhang ZY
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7943-8. PubMed ID: 15148367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disparate proteome reactivity profiles of carbon electrophiles.
    Weerapana E; Simon GM; Cravatt BF
    Nat Chem Biol; 2008 Jul; 4(7):405-7. PubMed ID: 18488014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tandem orthogonal proteolysis strategy for high-content chemical proteomics.
    Speers AE; Cravatt BF
    J Am Chem Soc; 2005 Jul; 127(28):10018-9. PubMed ID: 16011363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and development of histone deacetylase (HDAC) chemical probes for cell-based profiling.
    Albrow VE; Grimley RL; Clulow J; Rose CR; Sun J; Warmus JS; Tate EW; Jones LH; Storer RI
    Mol Biosyst; 2016 May; 12(6):1781-9. PubMed ID: 27021930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing.
    Steffler F; Guterl JK; Sieber V
    Enzyme Microb Technol; 2013 Oct; 53(5):307-14. PubMed ID: 24034429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus-Based Probes as Molecular Tools for Proteome Studies: Recent Advances in Probe Development and Applications.
    Joachimiak Ł; Błażewska KM
    J Med Chem; 2018 Oct; 61(19):8536-8562. PubMed ID: 29771523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the catalytic core of ALDH: a web of important residues begins to emerge.
    Hempel J; Lindahl R; Perozich J; Wang B; Kuo I; Nicholas H
    Chem Biol Interact; 2001 Jan; 130-132(1-3):39-46. PubMed ID: 11306029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome reactivity profiling for the discrimination of pathogenic bacteria.
    Lee JS; Yoo YH; Kang J; Han WS; Lee JK; Yoon CN
    Chem Commun (Camb); 2014 Apr; 50(33):4347-50. PubMed ID: 24643251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery.
    Berger AB; Vitorino PM; Bogyo M
    Am J Pharmacogenomics; 2004; 4(6):371-81. PubMed ID: 15651898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical proteomic identification of T-plastin as a novel host cell response factor in HCV infection.
    Yoo YH; Yun J; Yoon CN; Lee JS
    Sci Rep; 2015 Apr; 5():9773. PubMed ID: 25909246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit communication in tetrameric class 2 human liver aldehyde dehydrogenase as the basis for half-of-the-site reactivity and the dominance of the oriental subunit in a heterotetramer.
    Weiner H; Wei B; Zhou J
    Chem Biol Interact; 2001 Jan; 130-132(1-3):47-56. PubMed ID: 11306030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The application of small molecule bioactive probes in the identification of cellular targets].
    Zhang J; Zhou HC
    Yao Xue Xue Bao; 2012 Mar; 47(3):299-306. PubMed ID: 22645752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tagging and Enriching Proteins Enables Cell-Specific Proteomics.
    Elliott TS; Bianco A; Townsley FM; Fried SD; Chin JW
    Cell Chem Biol; 2016 Jul; 23(7):805-815. PubMed ID: 27447048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an aminooxy derivative for RNA and DNA labeling.
    Komatsu Y; Kojima N; Takebayashi T; Mikami A; Sugino M; Ohtsuka E
    Nucleic Acids Symp Ser (Oxf); 2008; (52):393-4. PubMed ID: 18776419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.