These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11182561)
1. Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain. Sasaki T; Senda M; Kim S; Kojima S; Kubodera A Nucl Med Biol; 2001 Jan; 28(1):25-31. PubMed ID: 11182561 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of glutathione localization in brain using 99mTc meso-HMPAO. Sasaki T; Senda M J Nucl Med; 1999 Jun; 40(6):1056-60. PubMed ID: 10452324 [TBL] [Abstract][Full Text] [Related]
3. Distribution of glutathione and technetium-99m-meso-HMPAO in normal and diethyl maleate-treated mouse brain mitochondria. Sasaki T; Fujibayashi Y; Senda M J Nucl Med; 1998 Dec; 39(12):2178-83. PubMed ID: 9867165 [TBL] [Abstract][Full Text] [Related]
4. Assessment of antioxidative ability in brain: technetium-99m-meso-HMPAO as an imaging agent for glutathione localization. Sasaki T; Toyama H; Oda K; Ogihara-Umeda I; Nishigori H; Senda M J Nucl Med; 1996 Oct; 37(10):1698-701. PubMed ID: 8862315 [TBL] [Abstract][Full Text] [Related]
5. Technetium-99m-meso-HMPAO as a potential agent to image cerebral glutathione content. Sasaki T; Senda M J Nucl Med; 1997 Jul; 38(7):1125-9. PubMed ID: 9225804 [TBL] [Abstract][Full Text] [Related]
6. Usefulness of (99m)Tc-d,l-HMPAO for estimation of GSH content in tumor tissues. Shimura N; Musya A; Hashimoto T; Kojima S; Kubodera A; Sasaki T Nucl Med Biol; 2000 Aug; 27(6):577-80. PubMed ID: 11056372 [TBL] [Abstract][Full Text] [Related]
7. Effect of in vitro ischemic or hypoxic treatment on mitochondrial electron transfer activity in rat brain slices assessed by gas-tissue autoradiography using. Sasaki T; Senda M; Ohno T; Kojima S; Kubodera A Brain Res; 2001 Jan; 890(1):100-9. PubMed ID: 11164772 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy. Szöllősi D; Hegedűs N; Veres DS; Futó I; Horváth I; Kovács N; Martinecz B; Dénes Á; Seifert D; Bergmann R; Lebeda O; Varga Z; Kaleta Z; Szigeti K; Máthé D Mol Imaging Biol; 2018 Dec; 20(6):952-962. PubMed ID: 29736562 [TBL] [Abstract][Full Text] [Related]
9. The effect of ligand structure on glutathione-mediated decomposition of propylene amine oxime derivatives. Roth CA; Hoffman TJ; Corlija M; Volkert WA; Holmes RA Int J Rad Appl Instrum B; 1992 Oct; 19(7):783-90. PubMed ID: 1399700 [TBL] [Abstract][Full Text] [Related]
10. New insights on flow-independent mechanisms of 99mTc-HMPAO retention in nervous tissue: in vitro study. Colamussi P; Calò G; Sbrenna S; Uccelli L; Bianchi C; Cittanti C; Siniscalchi A; Giganti M; Roveri R; Piffanelli A J Nucl Med; 1999 Sep; 40(9):1556-62. PubMed ID: 10492379 [TBL] [Abstract][Full Text] [Related]
11. Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury. Audi SH; Roerig DL; Haworth ST; Clough AV J Appl Physiol (1985); 2012 Aug; 113(4):658-65. PubMed ID: 22628374 [TBL] [Abstract][Full Text] [Related]
12. New synthesis route of active substance d,l-HMPAO for preparation Technetium Tc99m Exametazime. Pijarowska-Kruszyna J; Karczmarczyk U; Jaroń AW; Laszuk E; Radzik M; Garnuszek P; Mikołajczak R Nucl Med Rev Cent East Eur; 2017; 20(2):88-94. PubMed ID: 28555448 [TBL] [Abstract][Full Text] [Related]
13. Astrocytes as a predominant cellular site of (99m)Tc-HMPAO retention. Zerarka S; Pellerin L; Slosman D; Magistretti PJ J Cereb Blood Flow Metab; 2001 Apr; 21(4):456-68. PubMed ID: 11323531 [TBL] [Abstract][Full Text] [Related]
14. Is 99Tcm hexamethyl-propyleneamine oxime uptake in the tissues related to glutathione cellular content? el-Shirbiny AM; Sadek S; Owunwanne A; Yacoub T; Suresh L; Abdel-Dayem HM Nucl Med Commun; 1989 Dec; 10(12):905-11. PubMed ID: 2622593 [TBL] [Abstract][Full Text] [Related]
15. Brain perfusion SPECT in the mouse: normal pattern according to gender and age. Apostolova I; Wunder A; Dirnagl U; Michel R; Stemmer N; Lukas M; Derlin T; Gregor-Mamoudou B; Goldschmidt J; Brenner W; Buchert R Neuroimage; 2012 Dec; 63(4):1807-17. PubMed ID: 22971548 [TBL] [Abstract][Full Text] [Related]
16. Placental binding and transfer of radiopharmaceuticals: technetium-99m d, 1-HMPAO. Owunwanne A; Omu A; Patel M; Mathew M; Ayesha A; Gopinath S J Nucl Med; 1998 Oct; 39(10):1810-3. PubMed ID: 9776293 [TBL] [Abstract][Full Text] [Related]
17. Different uptake of 99mTc-ECD adn 99mTc-HMPAO in the same brains: analysis by statistical parametric mapping. Hyun Y; Lee JS; Rha JH; Lee IK; Ha CK; Lee DS Eur J Nucl Med; 2001 Feb; 28(2):191-7. PubMed ID: 11303889 [TBL] [Abstract][Full Text] [Related]
18. 99mTc-HMPAO and 99mTc-ECD perform differently in typically hypoperfused areas in Alzheimer's disease. Koulibaly PM; Nobili F; Migneco O; Vitali P; Robert PH; Girtler N; Darcourt J; Rodriguez G Eur J Nucl Med Mol Imaging; 2003 Jul; 30(7):1009-13. PubMed ID: 12750851 [TBL] [Abstract][Full Text] [Related]
19. Oxido-reductive state: the major determinant for cellular retention of technetium-99m-HMPAO. Jacquier-Sarlin MR; Polla BS; Slosman DO J Nucl Med; 1996 Aug; 37(8):1413-6. PubMed ID: 8708786 [TBL] [Abstract][Full Text] [Related]
20. Disparity of perfusion and glucose metabolism of epileptogenic zones in temporal lobe epilepsy demonstrated by SPM/SPAM analysis on 15O water PET, [18F]FDG-PET, and [99mTc]-HMPAO SPECT. Lee DS; Lee JS; Kang KW; Jang MJ; Lee SK; Chung JK; Lee MC Epilepsia; 2001 Dec; 42(12):1515-22. PubMed ID: 11879361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]