These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11182578)

  • 1. Effects of electrode properties on EEG measurements and a related inverse problem.
    Ollikainen JO; Vauhkonen M; Karjalainen PA; Kaipio JP
    Med Eng Phys; 2000 Oct; 22(8):535-45. PubMed ID: 11182578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward and inverse effects of the complete electrode model in neonatal EEG.
    Pursiainen S; Lew S; Wolters CH
    J Neurophysiol; 2017 Mar; 117(3):876-884. PubMed ID: 27852731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete electrode model in EEG: relationship and differences to the point electrode model.
    Pursiainen S; Lucka F; Wolters CH
    Phys Med Biol; 2012 Feb; 57(4):999-1017. PubMed ID: 22297396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalp electrode impedance, infection risk, and EEG data quality.
    Ferree TC; Luu P; Russell GS; Tucker DM
    Clin Neurophysiol; 2001 Mar; 112(3):536-44. PubMed ID: 11222977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.
    Baek HJ; Lee HJ; Lim YG; Park KS
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3422-31. PubMed ID: 22961261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dependence of Electrode Impedance on the Number of Performed EEG Examinations.
    Górecka J; Makiewicz P
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General bounds for electrode mislocation on the EEG inverse problem.
    Beltrachini L; von Ellenrieder N; Muravchik CH
    Comput Methods Programs Biomed; 2011 Jul; 103(1):1-9. PubMed ID: 20599288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings.
    Benovitski YB; Lai A; McGowan CC; Burns O; Maxim V; Nayagam DAX; Millard R; Rathbone GD; le Chevoir MA; Williams RA; Grayden DB; May CN; Murphy M; D'Souza WJ; Cook MJ; Williams CE
    Epilepsy Res; 2017 Sep; 135():29-37. PubMed ID: 28618377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution.
    Ryynänen OR; Hyttinen JA; Laarne PH; Malmivuo JA
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1547-54. PubMed ID: 15376503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode-Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode.
    Nasrollaholhosseini SH; Mercier J; Fischer G; Besio WG
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2897-2905. PubMed ID: 30735984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printable Dry EEG Electrodes with Coiled-Spring Prongs.
    Kimura M; Nakatani S; Nishida SI; Taketoshi D; Araki N
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Scale topography dry electrode for biopotential measurements.
    Vanlerberghe F; De Volder M; de Beeck MO; Penders J; Reynaerts D; Puers R; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1892-5. PubMed ID: 22254700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.
    Guermandi M; Cardu R; Franchi Scarselli E; Guerrieri R
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):21-33. PubMed ID: 24860040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode scalp impedance differences between electroencephalography machines in healthy dogs.
    Luca J; Hazenfratz M; Monteith G; Sanchez A; Gaitero L; James F
    Can J Vet Res; 2021 Oct; 85(4):309-311. PubMed ID: 34602736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.