BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11182890)

  • 1. Protein profiling comes of age.
    Tomlinson IM; Holt LJ
    Genome Biol; 2001; 2(2):REVIEWS1004. PubMed ID: 11182890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global profiling of gene expression in cancer using genomics and proteomics.
    Hanash SM
    Curr Opin Mol Ther; 2001 Dec; 3(6):538-45. PubMed ID: 11804268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA deep sequencing as a tool for selection of cell lines for systematic subcellular localization of all human proteins.
    Danielsson F; Wiking M; Mahdessian D; Skogs M; Ait Blal H; Hjelmare M; Stadler C; Uhlén M; Lundberg E
    J Proteome Res; 2013 Jan; 12(1):299-307. PubMed ID: 23227862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.
    Kampf C; Mardinoglu A; Fagerberg L; Hallström BM; Edlund K; Lundberg E; Pontén F; Nielsen J; Uhlen M
    FASEB J; 2014 Jul; 28(7):2901-14. PubMed ID: 24648543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein microarrays: catching the proteome.
    Poetz O; Schwenk JM; Kramer S; Stoll D; Templin MF; Joos TO
    Mech Ageing Dev; 2005 Jan; 126(1):161-70. PubMed ID: 15610775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Human Adrenal Gland Proteome Defined by Transcriptomics and Antibody-Based Profiling.
    Bergman J; Botling J; Fagerberg L; Hallström BM; Djureinovic D; Uhlén M; Pontén F
    Endocrinology; 2017 Feb; 158(2):239-251. PubMed ID: 27901589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-length transcriptome-based H-InvDB throws a new light on chromosome-centric proteomics.
    Imanishi T; Nagai Y; Habara T; Yamasaki C; Takeda J; Mikami S; Bando Y; Tojo H; Nishimura T
    J Proteome Res; 2013 Jan; 12(1):62-6. PubMed ID: 23245335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operomics: integrated genomic and proteomic profiling of cells and tissues.
    Hanash SM; Beretta LM
    Brief Funct Genomic Proteomic; 2002 Feb; 1(1):10-22. PubMed ID: 15251063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of high-density antibody microarrays for disease proteomics: key technological issues.
    Borrebaeck CA; Wingren C
    J Proteomics; 2009 Aug; 72(6):928-35. PubMed ID: 19457338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational profiling: the genome-wide measure of the nascent proteome.
    Beilharz TH; Preiss T
    Brief Funct Genomic Proteomic; 2004 Aug; 3(2):103-11. PubMed ID: 15355593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human saliva proteome and transcriptome.
    Hu S; Li Y; Wang J; Xie Y; Tjon K; Wolinsky L; Loo RR; Loo JA; Wong DT
    J Dent Res; 2006 Dec; 85(12):1129-33. PubMed ID: 17122167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the living genome in health and disease with DNA microarrays.
    Diehn M; Alizadeh AA; Brown PO
    JAMA; 2000 May; 283(17):2298-9. PubMed ID: 10807394
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional genomics approaches to understanding brain disorders.
    Shilling PD; Kelsoe JR
    Pharmacogenomics; 2002 Jan; 3(1):31-45. PubMed ID: 11966401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spanish human proteome project: dissection of chromosome 16.
    Segura V; Medina-Aunon JA; Guruceaga E; Gharbi SI; González-Tejedo C; Sánchez del Pino MM; Canals F; Fuentes M; Casal JI; Martínez-Bartolomé S; Elortza F; Mato JM; Arizmendi JM; Abian J; Oliveira E; Gil C; Vivanco F; Blanco F; Albar JP; Corrales FJ
    J Proteome Res; 2013 Jan; 12(1):112-22. PubMed ID: 23234512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA profiling of MS brain tissues.
    Kinter J; Zeis T; Schaeren-Wiemers N
    Int MS J; 2008 Jun; 15(2):51-8. PubMed ID: 18782500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free synthesis-based protein microarrays and their applications.
    Chandra H; Srivastava S
    Proteomics; 2010 Feb; 10(4):717-30. PubMed ID: 19953547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Strategy for the protein identification of human proteome expression profile: selection of searching database].
    Wu SF; Zhu YP; He FC
    Yi Chuan; 2005 Sep; 27(5):687-93. PubMed ID: 16257892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of a missing protein expression map in the context of the human proteome project.
    Guruceaga E; Sanchez del Pino MM; Corrales FJ; Segura V
    J Proteome Res; 2015 Mar; 14(3):1350-60. PubMed ID: 25612097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project.
    Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK
    J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey of microarray technologies suitable to elucidate transcriptional networks as exemplified by studying KRAB zinc finger gene families.
    Koczan D; Thiesen HJ
    Proteomics; 2006 Sep; 6(17):4704-15. PubMed ID: 16933337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.