BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11185421)

  • 1. Machine learning for survival analysis: a case study on recurrence of prostate cancer.
    Zupan B; Demsar J; Kattan MW; Beck JR; Bratko I
    Artif Intell Med; 2000 Aug; 20(1):59-75. PubMed ID: 11185421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of censoring on learning Bayesian networks in survival modelling.
    Stajduhar I; Dalbelo-Basić B; Bogunović N
    Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prostate Cancer Probability Prediction By Machine Learning Technique.
    Jović S; Miljković M; Ivanović M; Šaranović M; Arsić M
    Cancer Invest; 2017 Nov; 35(10):647-651. PubMed ID: 29243988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.
    Vock DM; Wolfson J; Bandyopadhyay S; Adomavicius G; Johnson PE; Vazquez-Benitez G; O'Connor PJ
    J Biomed Inform; 2016 Jun; 61():119-31. PubMed ID: 26992568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
    Jiménez F; Sánchez G; Juárez JM
    Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Naive Bayesian-based nomogram for prediction of prostate cancer recurrence.
    Demsar J; Zupan B; Kattan MW; Beck JR; Bratko I
    Stud Health Technol Inform; 1999; 68():436-41. PubMed ID: 10724923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Bayesian networks from survival data using weighting censored instances.
    Stajduhar I; Dalbelo-Basić B
    J Biomed Inform; 2010 Aug; 43(4):613-22. PubMed ID: 20332035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic.
    Wang M; Long Q
    Biometrics; 2016 Sep; 72(3):897-906. PubMed ID: 26756274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator.
    Willems S; Schat A; van Noorden MS; Fiocco M
    Stat Methods Med Res; 2018 Feb; 27(2):323-335. PubMed ID: 26988930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework.
    Bussy S; Veil R; Looten V; Burgun A; Gaïffas S; Guilloux A; Ranque B; Jannot AS
    BMC Med Res Methodol; 2019 Mar; 19(1):50. PubMed ID: 30841867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-agnostic explanations for survival prediction models.
    Suresh K; Görg C; Ghosh D
    Stat Med; 2024 May; 43(11):2161-2182. PubMed ID: 38530157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.
    Wolfson J; Bandyopadhyay S; Elidrisi M; Vazquez-Benitez G; Vock DM; Musgrove D; Adomavicius G; Johnson PE; O'Connor PJ
    Stat Med; 2015 Sep; 34(21):2941-57. PubMed ID: 25980520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy.
    Wong NC; Lam C; Patterson L; Shayegan B
    BJU Int; 2019 Jan; 123(1):51-57. PubMed ID: 29969172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CondiS: A conditional survival distribution-based method for censored data imputation overcoming the hurdle in machine learning-based survival analysis.
    Wang Y; Flowers CR; Li Z; Huang X
    J Biomed Inform; 2022 Jul; 131():104117. PubMed ID: 35690348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer.
    Kattan MW; Wheeler TM; Scardino PT
    J Clin Oncol; 1999 May; 17(5):1499-507. PubMed ID: 10334537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning in prognosis of the femoral neck fracture recovery.
    Kukar M; Kononenko I; Silvester T
    Artif Intell Med; 1996 Oct; 8(5):431-51. PubMed ID: 8955855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of different types of liver diseases using rule based classification model.
    Kumar Y; Sahoo G
    Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.
    Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J
    Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of three risk assessment tools in Australian patients with prostate cancer.
    Tamblyn DJ; Chopra S; Yu C; Kattan MW; Pinnock C; Kopsaftis T
    BJU Int; 2011 Nov; 108 Suppl 2():51-6. PubMed ID: 22085129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.