These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 11186393)
1. Biogeochemistry. Sulfate reducers--dominant players in a low-oxygen world? Vasconcelos C; McKenzie JA Science; 2000 Dec; 290(5497):1711-2. PubMed ID: 11186393 [TBL] [Abstract][Full Text] [Related]
2. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Labrenz M; Druschel GK; Thomsen-Ebert T; Gilbert B; Welch SA; Kemner KM; Logan GA; Summons RE; De Stasio G; Bond PL; Lai B; Kelly SD; Banfield JF Science; 2000 Dec; 290(5497):1744-7. PubMed ID: 11099408 [TBL] [Abstract][Full Text] [Related]
3. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Michaelis W; Seifert R; Nauhaus K; Treude T; Thiel V; Blumenberg M; Knittel K; Gieseke A; Peterknecht K; Pape T; Boetius A; Amann R; Jørgensen BB; Widdel F; Peckmann J; Pimenov NV; Gulin MB Science; 2002 Aug; 297(5583):1013-5. PubMed ID: 12169733 [TBL] [Abstract][Full Text] [Related]
4. Deposition of biogenic iron minerals in a methane oxidizing microbial mat. Wrede C; Kokoschka S; Dreier A; Heller C; Reitner J; Hoppert M Archaea; 2013; 2013():102972. PubMed ID: 23843725 [TBL] [Abstract][Full Text] [Related]
5. The Archean sulfur cycle and the early history of atmospheric oxygen. Canfield DE; Habicht KS; Thamdrup B Science; 2000 Apr; 288(5466):658-61. PubMed ID: 10784446 [TBL] [Abstract][Full Text] [Related]
6. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Labrenz M; Banfield JF Microb Ecol; 2004 Apr; 47(3):205-17. PubMed ID: 14994175 [TBL] [Abstract][Full Text] [Related]
7. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Canfield DE; Thamdrup B Science; 1994 Dec; 266():1973-5. PubMed ID: 11540246 [TBL] [Abstract][Full Text] [Related]
8. Sulfate clues for the early history of atmospheric oxygen. Paytan A Science; 2000 Apr; 288(5466):626-7. PubMed ID: 10798999 [No Abstract] [Full Text] [Related]
9. Comment on "Early Archaean microorganisms preferred elemental sulfur, not sulfate". Bao H; Sun T; Kohl I; Peng Y Science; 2008 Mar; 319(5868):1336; author reply 1336. PubMed ID: 18323434 [TBL] [Abstract][Full Text] [Related]
10. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Habicht KS; Canfield DE Geochim Cosmochim Acta; 1997 Dec; 61(24):5351-61. PubMed ID: 11541664 [TBL] [Abstract][Full Text] [Related]
11. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Philippot P; Van Zuilen M; Lepot K; Thomazo C; Farquhar J; Van Kranendonk MJ Science; 2007 Sep; 317(5844):1534-7. PubMed ID: 17872441 [TBL] [Abstract][Full Text] [Related]
12. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
13. The effect of temperature on sulfur and oxygen isotope fractionation by sulfate reducing bacteria (Desulfococcus multivorans). Pellerin A; Antler G; Marietou A; Turchyn AV; Jørgensen BB FEMS Microbiol Lett; 2020 May; 367(9):. PubMed ID: 32267916 [TBL] [Abstract][Full Text] [Related]
14. Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Suárez-Suárez A; López-López A; Tovar-Sánchez A; Yarza P; Orfila A; Terrados J; Arnds J; Marqués S; Niemann H; Schmitt-Kopplin P; Amann R; Rosselló-Móra R Environ Microbiol; 2011 Jun; 13(6):1488-99. PubMed ID: 21414123 [TBL] [Abstract][Full Text] [Related]
15. The Archean atmosphere and sedimentary sulfides. Towe KM Science; 2000 Aug; 289(5483):1297-8. PubMed ID: 10979853 [No Abstract] [Full Text] [Related]
16. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment. Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745 [TBL] [Abstract][Full Text] [Related]
17. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
18. Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. Madrid VM; Aller RC; Aller JY; Chistoserdov AY FEMS Microbiol Ecol; 2006 Aug; 57(2):169-81. PubMed ID: 16867136 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. Lyimo TJ; Pol A; Harhangi HR; Jetten MS; Op den Camp HJ FEMS Microbiol Ecol; 2009 Dec; 70(3):483-92. PubMed ID: 19744237 [TBL] [Abstract][Full Text] [Related]
20. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Knoblauch C; Jørgensen BB; Harder J Appl Environ Microbiol; 1999 Sep; 65(9):4230-3. PubMed ID: 10473441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]