These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11186609)

  • 21. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis.
    Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF
    Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element analysis of a femur to deconstruct the paradox of bone curvature.
    Jade S; Tamvada KH; Strait DS; Grosse IR
    J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
    Zhang Y; Zhong W; Zhu H; Chen Y; Xu L; Zhu J
    Int J Surg; 2013; 11(9):930-4. PubMed ID: 23832095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis.
    Zdero R; Olsen M; Bougherara H; Schemitsch EH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1175-83. PubMed ID: 19143412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated finite element analysis of excised human femora based on precision -QCT.
    Merz B; Niederer P; Müller R; Rüegsegger P
    J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the 3-D shape and mechanics of the proximal femur using a shape template and a bone mineral density image.
    Väänänen SP; Isaksson H; Julkunen P; Sirola J; Kröger H; Jurvelin JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):529-38. PubMed ID: 20809392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A minimal parametric model of the femur to describe axial elastic strain in response to loads.
    Cristofolini L; Cappello A; McNamara BP; Viceconti M
    Med Eng Phys; 1996 Sep; 18(6):502-14. PubMed ID: 8843406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A femoral model with all relevant muscles and hip capsule ligaments.
    Helwig P; Hindenlang U; Hirschmüller A; Konstantinidis L; Südkamp N; Schneider R
    Comput Methods Biomech Biomed Engin; 2013; 16(6):669-77. PubMed ID: 22149414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Numerical treatment of bone as anisotropic material].
    Besdo D; Händel M
    Biomed Tech (Berl); 1994 Nov; 39(11):293-8. PubMed ID: 7833449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models].
    Schmitt J; Lengsfeld M; Alter P; Leppek R
    Biomed Tech (Berl); 1995 Jun; 40(6):175-81. PubMed ID: 7632871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphing methods to parameterize specimen-specific finite element model geometries.
    Sigal IA; Yang H; Roberts MD; Downs JC
    J Biomech; 2010 Jan; 43(2):254-62. PubMed ID: 19878950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling.
    Jang IG; Kim IY
    J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
    MacLeod AR; Rose H; Gill HS
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27618586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of a finite element model of the thoracolumbar spine.
    Tyndyka MA; Barron V; McHugh PE; O'Mahoney D
    Acta Bioeng Biomech; 2007; 9(1):35-46. PubMed ID: 17933103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The muscle standardized femur: a step forward in the replication of numerical studies in biomechanics.
    Viceconti M; Ansaloni M; Baleani M; Toni A
    Proc Inst Mech Eng H; 2003; 217(2):105-10. PubMed ID: 12666777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical study of the resurfacing hip arthroplasty: finite element analysis of the femoral component.
    Watanabe Y; Shiba N; Matsuo S; Higuchi F; Tagawa Y; Inoue A
    J Arthroplasty; 2000 Jun; 15(4):505-11. PubMed ID: 10884212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.