These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11187484)
41. Significance of bacteria associated with invertebrates in drinking water distribution networks. Wolmarans E; du Preez HH; de Wet CM; Venter SN Water Sci Technol; 2005; 52(8):171-5. PubMed ID: 16312964 [TBL] [Abstract][Full Text] [Related]
42. Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water. Pavlov D; de Wet CM; Grabow WO; Ehlers MM Int J Food Microbiol; 2004 May; 92(3):275-87. PubMed ID: 15145586 [TBL] [Abstract][Full Text] [Related]
43. Identification of patients with congestive heart failure using different neural networks approaches. Elfadil N; Hossen A Technol Health Care; 2009; 17(4):305-21. PubMed ID: 19822947 [TBL] [Abstract][Full Text] [Related]
44. Artificial neural networks in analysis of indinavir and its degradation products retention. Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211 [TBL] [Abstract][Full Text] [Related]
45. Application of artificial neural networks to establish a predictive mortality risk model in children admitted to a paediatric intensive care unit. Chan CH; Chan EY; Ng DK; Chow PY; Kwok KL Singapore Med J; 2006 Nov; 47(11):928-34. PubMed ID: 17075658 [TBL] [Abstract][Full Text] [Related]
46. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Park YS; Chon TS; Kwak IS; Lek S Sci Total Environ; 2004 Jul; 327(1-3):105-22. PubMed ID: 15172575 [TBL] [Abstract][Full Text] [Related]
47. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China. Gen-Fu W; Xue-Ping Z Water Res; 2005 Nov; 39(19):4623-32. PubMed ID: 16253304 [TBL] [Abstract][Full Text] [Related]
48. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sahoo GB; Ray C; Mehnert E; Keefer DA Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784 [TBL] [Abstract][Full Text] [Related]
49. Predicting near-shore coliform bacteria concentrations using ANNS. Lin B; Kashefipour SM; Falconer RA Water Sci Technol; 2003; 48(10):225-32. PubMed ID: 15137174 [TBL] [Abstract][Full Text] [Related]
50. Application of principal component-artificial neural network models for simultaneous determination of phenolic compounds by a kinetic spectrophotometric method. Hasani M; Moloudi M J Hazard Mater; 2008 Aug; 157(1):161-9. PubMed ID: 18272286 [TBL] [Abstract][Full Text] [Related]
51. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Park YS; Verdonschot PF; Chon TS; Lek S Water Res; 2003 Apr; 37(8):1749-58. PubMed ID: 12697219 [TBL] [Abstract][Full Text] [Related]
52. Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Pagnier I; Raoult D; La Scola B Environ Microbiol; 2008 May; 10(5):1135-44. PubMed ID: 18279351 [TBL] [Abstract][Full Text] [Related]
53. [The bacteriological and virological characteristics of the sea and estuarine waters along the Tyrrhenian coast]. Aulicino FA; Volterra L; Muscillo M; Bellucci C; Orsini P; Mancini L; Patti AM; Santi AL; Mastroeni I; Floccia M Ann Ig; 1992; 4(6):383-94. PubMed ID: 1285079 [No Abstract] [Full Text] [Related]
54. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Morales TA; Dopson M; Athar R; Herbert RB Biotechnol Bioeng; 2005 Jun; 90(5):543-51. PubMed ID: 15818559 [TBL] [Abstract][Full Text] [Related]
55. Modeling flow and sediment transport in a river system using an artificial neural network. Yitian L; Gu RR Environ Manage; 2003 Jan; 31(1):122-34. PubMed ID: 12447580 [TBL] [Abstract][Full Text] [Related]
56. [Computer system for image analysis of fluorescently stained bacteria]. Drozdov VN; Sergeeva VN; Maksimenko SIu; Zemskaia TI Mikrobiologiia; 2006; 75(6):861-4. PubMed ID: 17205813 [No Abstract] [Full Text] [Related]
57. [Study of the aquatic bacterial community composition of Baikal lake by in situ hybridization assay]. Bel'kova NL; Driukker VV; Xong SKh; An TS Mikrobiologiia; 2003; 72(2):282-3. PubMed ID: 12751256 [No Abstract] [Full Text] [Related]
58. Multispectral imaging and artificial neural network: mimicking the management decision of the clinician facing pigmented skin lesions. Carrara M; Bono A; Bartoli C; Colombo A; Lualdi M; Moglia D; Santoro N; Tolomio E; Tomatis S; Tragni G; Santinami M; Marchesini R Phys Med Biol; 2007 May; 52(9):2599-613. PubMed ID: 17440255 [TBL] [Abstract][Full Text] [Related]
59. A neural approach to extract foreground from human movement images. Conforto S; Schmid M; Neri A; D'Alessio T Comput Methods Programs Biomed; 2006 Apr; 82(1):73-80. PubMed ID: 16563553 [TBL] [Abstract][Full Text] [Related]
60. Laboratory identification of bacterial pathogens of aquatic animals. Glorioso JC; Amborski RL; Larkin JM; Amborski GF; Culley DC Am J Vet Res; 1974 Mar; 35(3):447-50. PubMed ID: 4594746 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]