These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 11188690)
1. Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Scott WR; Schiffer CA Structure; 2000 Dec; 8(12):1259-65. PubMed ID: 11188690 [TBL] [Abstract][Full Text] [Related]
2. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Rose RB; Craik CS; Stroud RM Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of drug resistance revealed by the crystal structure of the unliganded HIV-1 protease with F53L mutation. Liu F; Kovalevsky AY; Louis JM; Boross PI; Wang YF; Harrison RW; Weber IT J Mol Biol; 2006 May; 358(5):1191-9. PubMed ID: 16569415 [TBL] [Abstract][Full Text] [Related]
4. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions. Seibold SA; Cukier RI Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840 [TBL] [Abstract][Full Text] [Related]
5. Flap opening mechanism of HIV-1 protease. Tóth G; Borics A J Mol Graph Model; 2006 May; 24(6):465-74. PubMed ID: 16188477 [TBL] [Abstract][Full Text] [Related]
6. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease. Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135 [TBL] [Abstract][Full Text] [Related]
8. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Perryman AL; Lin JH; McCammon JA Protein Sci; 2004 Apr; 13(4):1108-23. PubMed ID: 15044738 [TBL] [Abstract][Full Text] [Related]
9. How Mutations Can Resist Drug Binding yet Keep HIV-1 Protease Functional. Appadurai R; Senapati S Biochemistry; 2017 Jun; 56(23):2907-2920. PubMed ID: 28505418 [TBL] [Abstract][Full Text] [Related]
10. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661 [TBL] [Abstract][Full Text] [Related]
11. Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR. Deshmukh L; Tugarinov V; Louis JM; Clore GM Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9855-E9862. PubMed ID: 29087351 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant. Todd MJ; Luque I; Velázquez-Campoy A; Freire E Biochemistry; 2000 Oct; 39(39):11876-83. PubMed ID: 11009599 [TBL] [Abstract][Full Text] [Related]
13. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. Piana S; Carloni P; Parrinello M J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of a multidrug-resistant human immunodeficiency virus type 1 protease reveal an expanded active-site cavity. Logsdon BC; Vickrey JF; Martin P; Proteasa G; Koepke JI; Terlecky SR; Wawrzak Z; Winters MA; Merigan TC; Kovari LC J Virol; 2004 Mar; 78(6):3123-32. PubMed ID: 14990731 [TBL] [Abstract][Full Text] [Related]
15. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. Meher BR; Wang Y J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662 [TBL] [Abstract][Full Text] [Related]
16. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G; Steinbrecher T; Papadopoulos MG J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Hong L; Zhang XC; Hartsuck JA; Tang J Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162 [TBL] [Abstract][Full Text] [Related]
18. Role of invariant Thr80 in human immunodeficiency virus type 1 protease structure, function, and viral infectivity. Foulkes JE; Prabu-Jeyabalan M; Cooper D; Henderson GJ; Harris J; Swanstrom R; Schiffer CA J Virol; 2006 Jul; 80(14):6906-16. PubMed ID: 16809296 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant. Lauria A; Ippolito M; Almerico AM J Mol Model; 2007 Nov; 13(11):1151-6. PubMed ID: 17786489 [TBL] [Abstract][Full Text] [Related]
20. Sequence requirements of the HIV-1 protease flap region determined by saturation mutagenesis and kinetic analysis of flap mutants. Shao W; Everitt L; Manchester M; Loeb DD; Hutchison CA; Swanstrom R Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2243-8. PubMed ID: 9122179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]