These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11189052)

  • 21. Insulin release from a bioartificial pancreas using a mesh reinforced polyvinyl alcohol hydrogel tube. An in vitro study.
    Aung T; Kogire M; Inoue K; Fujisato T; Gu Y; Burczak K; Shinohara S; Mitsuo M; Maetani S; Ikada Y
    ASAIO J; 1993; 39(2):93-6. PubMed ID: 8324268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment and modeling of poly(vinyl alcohol) bioartificial pancreas in vivo.
    Young TH; Chuang WY; Hsieh MY; Chen LW; Hsu JP
    Biomaterials; 2002 Aug; 23(16):3495-501. PubMed ID: 12099294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microencapsulation of islets with living cells using polyDNA-PEG-lipid conjugate.
    Teramura Y; Minh LN; Kawamoto T; Iwata H
    Bioconjug Chem; 2010 Apr; 21(4):792-6. PubMed ID: 20210336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: a novel application of the microdialysis technique.
    Rafael E; Wernerson A; Arner P; Wu GS; Tibell A
    Cell Transplant; 1999; 8(3):317-26. PubMed ID: 10442744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical and biological properties of nanoporous carbon membranes.
    Narayan RJ; Aggarwal R; Wei W; Jin C; Monteiro-Riviere NA; Crombez R; Shen W
    Biomed Mater; 2008 Sep; 3(3):034107. PubMed ID: 18689923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new bioartificial pancreas utilizing amphiphilic membranes for the immunoisolation of porcine islets: a pilot study in the canine.
    Grundfest-Broniatowski SF; Tellioglu G; Rosenthal KS; Kang J; Erdodi G; Yalcin B; Cakmak M; Drazba J; Bennett A; Lu L; Kennedy JP
    ASAIO J; 2009; 55(4):400-5. PubMed ID: 19506465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane immunoisolation of a diffusion chamber for bioartificial pancreas.
    Ohgawara H; Hirotani S; Miyazaki J; Teraoka S
    Artif Organs; 1998 Sep; 22(9):788-94. PubMed ID: 9754467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A newly developed bioartificial pancreas successfully controls blood glucose in totally pancreatectomized diabetic pigs.
    Ikeda H; Kobayashi N; Tanaka Y; Nakaji S; Yong C; Okitsu T; Oshita M; Matsumoto S; Noguchi H; Narushima M; Tanaka K; Miki A; Rivas-Carrillo JD; Soto-Gutierrez A; Navarro-Alvarez N; Tanaka K; Jun HS; Tanaka N; Yoon JW
    Tissue Eng; 2006 Jul; 12(7):1799-809. PubMed ID: 16889510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryopreserved agarose-encapsulated islets as bioartificial pancreas: a feasibility study.
    Agudelo CA; Teramura Y; Iwata H
    Transplantation; 2009 Jan; 87(1):29-34. PubMed ID: 19136888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of cross-linked hemoglobin on functionality and viability of microencapsulated pancreatic islets.
    Chae SY; Kim SW; Bae YH
    Tissue Eng; 2002 Jul; 8(3):379-94. PubMed ID: 12167225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Injectable microencapsulated islet cells as a bioartificial pancreas.
    Sun AM; O'Shea GM; Goosen MF
    Appl Biochem Biotechnol; 1984; 10():87-99. PubMed ID: 6441521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a polysulfone hollow fiber vascular bio-artificial pancreas device for in vitro studies.
    Silva AI; Mateus M
    J Biotechnol; 2009 Feb; 139(3):236-49. PubMed ID: 19121345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anodic aluminium oxide membranes for immunoisolation with sufficient oxygen supply for pancreatic islets.
    Cho S; Lee S; Jeong SH; Kim Y; Kim SC; Hwang W; Park J
    Integr Biol (Camb); 2013 May; 5(5):828-34. PubMed ID: 23546334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of insulin secretion from MIN6 pseudoislets after encapsulation in a prototype device of a bioartificial pancreas.
    Barrientos R; Baltrusch S; Sigrist S; Legeay G; Belcourt A; Lenzen S
    Horm Metab Res; 2009 Jan; 41(1):5-9. PubMed ID: 18855306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Islet encapsulation with living cells for improvement of biocompatibility.
    Teramura Y; Iwata H
    Biomaterials; 2009 Apr; 30(12):2270-5. PubMed ID: 19201021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas.
    Qi M; Gu Y; Sakata N; Kim D; Shirouzu Y; Yamamoto C; Hiura A; Sumi S; Inoue K
    Biomaterials; 2004 Dec; 25(27):5885-92. PubMed ID: 15172501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Islet encapsulated implantable composite hollow fiber membrane based device: A bioartificial pancreas.
    Teotia RS; Kadam S; Singh AK; Verma SK; Bahulekar A; Kanetkar S; Bellare J
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():857-866. PubMed ID: 28532102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maintenance of aerobic metabolism increases immunoisolated islet survival.
    Stagner JI; Seelan RS; Parthasarathy RN
    Islets; 2011; 3(3):89-92. PubMed ID: 21471739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan-polyvinyl pyrrolidone hydrogel does not activate macrophages: potentials for transplantation applications.
    Risbud M; Bhonde M; Bhonde R
    Cell Transplant; 2001; 10(2):195-202. PubMed ID: 11332634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of cationic dendrons with albumin and their diffusion through cellulose membranes.
    Purohit G; Sakthivel T; Florence AT
    Int J Pharm; 2003 Mar; 254(1):37-41. PubMed ID: 12615406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.