These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 11189268)

  • 1. [Advance in medical robot].
    Gao L; Lin L; Yan G; Rongrong
    Zhongguo Yi Liao Qi Xie Za Zhi; 1997 Nov; 21(6):341-4. PubMed ID: 11189268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotics in microsurgery: use of a surgical robot to perform a free flap in a pig.
    Katz RD; Rosson GD; Taylor JA; Singh NK
    Microsurgery; 2005; 25(7):566-9. PubMed ID: 16178007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin.
    Hockstein NG; Nolan JP; O'malley BW; Woo YJ
    Laryngoscope; 2005 May; 115(5):780-5. PubMed ID: 15867639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of advanced engineering technologies to medical and rehabilitation fields].
    Fujie M
    Gan To Kagaku Ryoho; 2012 Jul; 39(7):1044-8. PubMed ID: 22790039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted pharyngeal and laryngeal microsurgery: results of robotic cadaver dissections.
    Hockstein NG; Nolan JP; O'Malley BW; Woo YJ
    Laryngoscope; 2005 Jun; 115(6):1003-8. PubMed ID: 15933510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robot workstation for use in education of the physically handicapped.
    Harwin WS; Ginige A; Jackson RD
    IEEE Trans Biomed Eng; 1988 Feb; 35(2):127-31. PubMed ID: 2965091
    [No Abstract]   [Full Text] [Related]  

  • 8. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic microsurgical vasovasostomy and vasoepididymostomy: a prospective randomized study in a rat model.
    Schiff J; Li PS; Goldstein M
    J Urol; 2004 Apr; 171(4):1720-5. PubMed ID: 15017273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From wired to wireless: a miniature robot for intestinal inspection.
    Chi D; Yan G
    J Med Eng Technol; 2003; 27(2):71-6. PubMed ID: 12745914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research on applications of micromachine technology in medical engineering].
    Lin L; Yan G; Song Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 1999 Sep; 23(5):258-64, 307. PubMed ID: 12583069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of robot hand technique in the course of microneurosurgical operations].
    Csókay A; Valálik I; Jobbágy A
    Ideggyogy Sz; 2009 Jan; 62(1-2):48-52. PubMed ID: 19248727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].
    Pott P; Weiser P; Scharf HP; Schwarz M
    Biomed Tech (Berl); 2004 Jun; 49(6):177-80. PubMed ID: 15279468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic microsurgical vasovasostomy and vasoepididymostomy in rats.
    Schiff J; Li PS; Goldstein M
    Int J Med Robot; 2005 Jan; 1(2):122-6. PubMed ID: 17518384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early experiences with a novel (robot hand) technique in the course of microneurosurgery.
    Csókay A; Valálik I; Jobbágy A
    Surg Neurol; 2009 Apr; 71(4):469-72. PubMed ID: 18617248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a surgical robot system for endovascular surgery with augmented reality function.
    Suzuki N; Hattori A; Suzuki S; Otake Y
    Stud Health Technol Inform; 2007; 125():460-3. PubMed ID: 17377326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and control of a rehabilitation mobile robot by close human-machine cooperation.
    Hoppenot P; Colle E
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):181-90. PubMed ID: 11474971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of training in robotic-assisted microvascular surgery.
    Karamanoukian RL; Bui T; McConnell MP; Evans GR; Karamanoukian HL
    Ann Plast Surg; 2006 Dec; 57(6):662-5. PubMed ID: 17122554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted abdominal surgery.
    Gutt CN; Oniu T; Mehrabi A; Kashfi A; Schemmer P; Büchler MW
    Br J Surg; 2004 Nov; 91(11):1390-7. PubMed ID: 15386325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.