BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11189520)

  • 1. [Application of comparative genomic hybridization to hyperdiploid acute lymphoblastic leukemia].
    Cao Q; Wu Q; Su X
    Zhonghua Xue Ye Xue Za Zhi; 1998 Jul; 19(7):363-6. PubMed ID: 11189520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of chromosome over- and underrepresentations in hyperdiploid acute lymphoblastic leukemia by comparative genomic hybridization.
    Wong N; Chen SJ; Cao Q; Su XY; Niu C; Wu QW; Leung TW; Wickham N; Johnson PJ; Chen Z
    Cancer Genet Cytogenet; 1998 May; 103(1):20-4. PubMed ID: 9595040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of high-resolution comparative genomic hybridization (HR-CGH) in detection of chromosomal abnormalities in children with acute leukaemia.
    Vranova V; Mentzlova D; Oltova A; Linkova V; Zezulkova D; Filkova H; Mendelova D; Sterba J; Kuglik P
    Neoplasma; 2008; 55(1):23-30. PubMed ID: 18190236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomic hybridization in pediatric acute lymphoblastic leukemia.
    Rice M; Breen CJ; O'Meara A; Breatnach F; O'Marcaigh AS; Stallings RL
    Pediatr Hematol Oncol; 2000 Mar; 17(2):141-7. PubMed ID: 10734656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and numerical abnormalities resolved in one-step analysis: the most common chromosomal rearrangements detected by comparative genomic hybridization in childhood acute lymphoblastic leukemia.
    Kowalczyk JR; Babicz M; Gaworczyk A; Lejman M; Winnicka D; Styka B; Jaszczuk I
    Cancer Genet Cytogenet; 2010 Jul; 200(2):161-6. PubMed ID: 20620600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diagnosis by comparative genomic hybridization in adult de novo acute myelocytic leukemia.
    Casas S; Aventín A; Fuentes F; Vallespí T; Granada I; Carrió A; Angel Martínez-Climent J; Solé F; Teixidó M; Bernués M; Duarte J; Maria Hernández J; Brunet S; Dolors Coll M; Sierra J
    Cancer Genet Cytogenet; 2004 Aug; 153(1):16-25. PubMed ID: 15325089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA copy number changes in childhood acute lymphoblastic leukemia.
    Larramendy ML; Huhta T; Heinonen K; Vettenranta K; Mahlamäki E; Riikonen P; Saarinen-Pihkala UM; Knuutila S
    Haematologica; 1998 Oct; 83(10):890-5. PubMed ID: 9830797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding.
    Kuchinskaya E; Heyman M; Nordgren A; Schoumans J; Staaf J; Borg A; Söderhäll S; Grandér D; Nordenskjöld M; Blennow E
    Br J Haematol; 2008 Mar; 140(5):572-7. PubMed ID: 18275435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative expressed sequence hybridization studies of high-hyperdiploid childhood acute lymphoblastic leukemia.
    Gruszka-Westwood AM; Horsley SW; Martinez-Ramirez A; Harrison CJ; Kempski H; Moorman AV; Ross FM; Griffiths M; Greaves MF; Kearney L
    Genes Chromosomes Cancer; 2004 Nov; 41(3):191-202. PubMed ID: 15334542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute lymphoblastic leukemias with normal karyotypes are not without genomic aberrations.
    Usvasalo A; Räty R; Harila-Saari A; Koistinen P; Savolainen ER; Vettenranta K; Knuutila S; Elonen E; Saarinen-Pihkala UM
    Cancer Genet Cytogenet; 2009 Jul; 192(1):10-7. PubMed ID: 19480931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Detection of aberrant chromosomes in acute lymphoblastic leukemia by fluorescence in situ hybridization].
    Yang K; Huang L
    Zhonghua Xue Ye Xue Za Zhi; 1999 Dec; 20(12):640-2. PubMed ID: 11721367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomic hybridization as part of a new diagnostic strategy in childhood hyperdiploid acute lymphoblastic leukemia.
    Haas O; Henn T; Romanakis K; du Manoir S; Lengauer C
    Leukemia; 1998 Apr; 12(4):474-81. PubMed ID: 9557603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Array comparative genome hybridization analysis of acute lymphoblastic leukaemia and acute megakaryoblastic leukaemia in patients with Down syndrome.
    Lo KC; Chalker J; Strehl S; Neat M; Smith O; Dastugue N; Kearney L; Izraeli S; Kempski H; Cowell JK
    Br J Haematol; 2008 Sep; 142(6):934-45. PubMed ID: 18557744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of conventional cytogenetics, comparative genomic hybridisation and interphase fluorescence in situ hybridisation for the detection of genomic rearrangements in acute leukaemia.
    McGrattan P; Campbell S; Cuthbert R; Jones FG; McMullin MF; Humphreys M
    J Clin Pathol; 2008 Aug; 61(8):903-8. PubMed ID: 18474541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometric DNA index, G-band karyotyping, and comparative genomic hybridization in detection of high hyperdiploidy in childhood acute lymphoblastic leukemia.
    Nygaard U; Larsen J; Kristensen TD; Wesenberg F; Jonsson OG; Carlsen NT; Forestier E; Kirchhoff M; Larsen JK; Schmiegelow K; Christensen IJ
    J Pediatr Hematol Oncol; 2006 Mar; 28(3):134-40. PubMed ID: 16679935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Karyotype refinement by multicolor fluorescence in situ hybridization analysis in 18 patients with acute lymphoblastic leukemia.
    Calabrese G; Taraborelli T; Fantasia D; Guanciali Franchi P; Spadano A; Palka G
    Haematologica; 2002 Aug; 87(8):888-9. PubMed ID: 12161369
    [No Abstract]   [Full Text] [Related]  

  • 17. Rescue of genomic information in adult acute lymphoblastic leukaemia (ALL) with normal/failed cytogenetics: a GIMEMA centralized biological study.
    Matteucci C; Barba G; Varasano E; Vitale A; Mancini M; Testoni N; Cuneo A; Rege-Cambrin G; Elia L; La Starza R; Pierini V; Brandimarte L; Vignetti M; Foà R; Mecucci C;
    Br J Haematol; 2010 Apr; 149(1):70-8. PubMed ID: 20067559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of using comparative genomic hybridization to improve detection of chromosomal changes in childhood acute lymphoblastic leukemia.
    Jarosová M; Holzerová M; Jedlicková K; Mihál V; Zuna J; Starý J; Pospísilová D; Zemanová Z; Trka J; Blazek J; Pikalová Z; Indrák K
    Cancer Genet Cytogenet; 2000 Dec; 123(2):114-22. PubMed ID: 11156736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia.
    Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S
    Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH.
    Schoch C; Haferlach T; Bursch S; Gerstner D; Schnittger S; Dugas M; Kern W; Löffler H; Hiddemann W
    Genes Chromosomes Cancer; 2002 Sep; 35(1):20-9. PubMed ID: 12203786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.