These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 11190985)

  • 21. Interleukin-1 beta inhibits the intestinal transport of [14C] 3-O-methylglucose in the rat.
    Kreydiyyeh SI; Haddad JJ; Garabedian BS
    Life Sci; 1998; 63(21):1913-9. PubMed ID: 9825769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats.
    Washizawa N; Gu LH; Gu L; Openo KP; Jones DP; Ziegler TR
    JPEN J Parenter Enteral Nutr; 2004; 28(6):399-409. PubMed ID: 15568286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute exposure of rabbit jejunum to ethanol. In vitro uptake of hexoses.
    Thomson AB
    Dig Dis Sci; 1984 Mar; 29(3):267-74. PubMed ID: 6697866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of food deprivation on the transport of 3-O-methyl-alpha-D-glucose across the isolated ruminal epithelium of sheep.
    Gäbel G; Aschenbach JR
    J Anim Sci; 2002 Oct; 80(10):2740-6. PubMed ID: 12413097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo and in vitro effects of human growth hormone on rat intestinal ion transport.
    Guarino A; Canani RB; Iafusco M; Casola A; Russo R; Rubino A
    Pediatr Res; 1995 May; 37(5):576-80. PubMed ID: 7603774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Luminal leptin induces rapid inhibition of active intestinal absorption of glucose mediated by sodium-glucose cotransporter 1.
    Ducroc R; Guilmeau S; Akasbi K; Devaud H; Buyse M; Bado A
    Diabetes; 2005 Feb; 54(2):348-54. PubMed ID: 15677491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of enzyme-inducing and enzyme-inhibiting agents on drug absorption. II. Influence in proadifen on 3-O-methylglucose transport in rats.
    Ravis WR; Feldman S
    J Pharm Sci; 1979 Aug; 68(8):945-9. PubMed ID: 480172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EGF and TGF stimulate proabsorption of glucose and electrolytes by Na+/glucose cotransporter in awake canine model.
    Rongione AJ; Kusske AM; Newton TR; Ashley SW; Zinner MJ; Mcfadden DW
    Dig Dis Sci; 2001 Aug; 46(8):1740-7. PubMed ID: 11508677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intestinal transport in megacolonic mice. Alterations in sugar absorption.
    Carey HV; Cooke HJ; Gerthoffer WT; Welling LW
    Dig Dis Sci; 1989 Feb; 34(2):185-92. PubMed ID: 2536605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth hormone regulates amino acid transport in human and rat liver.
    Pacitti AJ; Inoue Y; Plumley DA; Copeland EM; Souba WW
    Ann Surg; 1992 Sep; 216(3):353-61; discussion 361-2. PubMed ID: 1329681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of PI 3-kinase in EGF-stimulated jejunal glucose transport.
    Millar GA; Hardin JA; Johnson LR; Gall DG
    Can J Physiol Pharmacol; 2002 Jan; 80(1):77-84. PubMed ID: 11911228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of TGF alpha on intestinal solute transport.
    Hardin JA; Gall DG
    Regul Pept; 1992 Jun; 39(2-3):169-76. PubMed ID: 1438970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rehabilitative therapy of short bowel syndrome: experimental study and clinical trial.
    Li N; Zhu W; Guo F; Ren J; Li Y; Wang X; Li J
    Zhonghua Wai Ke Za Zhi; 2000 Aug; 38(8):565-9. PubMed ID: 11832109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prior exercise enhances passive absorption of intraduodenal glucose.
    Pencek RR; Koyama Y; Lacy DB; James FD; Fueger PT; Jabbour K; Williams PE; Wasserman DH
    J Appl Physiol (1985); 2003 Sep; 95(3):1132-8. PubMed ID: 12740315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enterocyte functional adaptation following intestinal resection.
    Whang EE; Dunn JC; Joffe H; Mahanty H; Zinner MJ; McFadden DW; Ashley SW
    J Surg Res; 1996 Feb; 60(2):370-4. PubMed ID: 8598671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postnatal development of glucose transport in the proximal small intestine of the rabbit.
    Gall DG; Perdue M; Chung M
    J Pediatr Gastroenterol Nutr; 1983; 2(1):127-32. PubMed ID: 6886935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of Na(+)-glucose cotransport to the short-circuit current in the pigmented rabbit conjunctiva.
    Hosoya K; Kompella UB; Kim KJ; Lee VH
    Curr Eye Res; 1996 Apr; 15(4):447-51. PubMed ID: 8670745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid stimulation of intestinal D-glucose transport in teleosts by 17 alpha-methyltestosterone.
    Hazzard CE; Ahearn GA
    Am J Physiol; 1992 Mar; 262(3 Pt 2):R412-8. PubMed ID: 1558211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of small intestinal glutamine transport by epidermal growth factor.
    Salloum RM; Stevens BR; Schultz GS; Souba WW
    Surgery; 1993 May; 113(5):552-9. PubMed ID: 8488475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.