These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11191216)

  • 1. Life as aerobes: are there simple rules for activation of dioxygen by enzymes?
    Klinman JP
    J Biol Inorg Chem; 2001 Jan; 6(1):1-13. PubMed ID: 11191216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of dioxygen bound to copper during enzyme catalysis.
    Wilmot CM; Hajdu J; McPherson MJ; Knowles PF; Phillips SE
    Science; 1999 Nov; 286(5445):1724-8. PubMed ID: 10576737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do enzymes activate oxygen without inactivating themselves?
    Klinman JP
    Acc Chem Res; 2007 May; 40(5):325-33. PubMed ID: 17474709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of the dioxygen activation by glucose oxidase and copper amine oxidase.
    Prabhakar R; Siegbahn PE; Minaev BF
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):173-8. PubMed ID: 12686129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using xenon as a probe for dioxygen-binding sites in copper amine oxidases.
    Duff AP; Trambaiolo DM; Cohen AE; Ellis PJ; Juda GA; Shepard EM; Langley DB; Dooley DM; Freeman HC; Guss JM
    J Mol Biol; 2004 Nov; 344(3):599-607. PubMed ID: 15533431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of dioxygen to non-metal sites in proteins: exploration of the importance of binding site size versus hydrophobicity in the copper amine oxidase from Hansenula polymorpha.
    Goto Y; Klinman JP
    Biochemistry; 2002 Nov; 41(46):13637-43. PubMed ID: 12427025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen activation in a copper-containing amine oxidase.
    Wilmot CM
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):493-6. PubMed ID: 12773142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes.
    Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M
    J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel.
    Samuels NM; Klinman JP
    Biochemistry; 2005 Nov; 44(43):14308-17. PubMed ID: 16245947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electronic mechanisms of molecular oxygen bioactivation].
    Minaev BF
    Ukr Biokhim Zh (1999); 2002; 74(3):11-9. PubMed ID: 12916232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper amine oxidase: cunning cofactor and controversial copper.
    Dawkes HC; Phillips SE
    Curr Opin Struct Biol; 2001 Dec; 11(6):666-73. PubMed ID: 11751046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic comparison of the cobalt-substituted and wild-type copper amine oxidase from Hansenula polymorpha.
    Mills SA; Goto Y; Su Q; Plastino J; Klinman JP
    Biochemistry; 2002 Aug; 41(34):10577-84. PubMed ID: 12186541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic observation of intermediates formed during the oxidative half-reaction of copper/topa quinone-containing phenylethylamine oxidase.
    Hirota S; Iwamoto T; Kishishita S; Okajima T; Yamauchi O; Tanizawa K
    Biochemistry; 2001 Dec; 40(51):15789-96. PubMed ID: 11747456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential.
    Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ
    Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of oxygen utilization during cofactor biogenesis in a copper-containing amine oxidase from yeast.
    Schwartz B; Dove JE; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3699-707. PubMed ID: 10736169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and computational evidence of metal-O2 activation and rate-limiting proton-coupled electron transfer in a copper amine oxidase.
    Liu Y; Mukherjee A; Nahumi N; Ozbil M; Brown D; Angeles-Boza AM; Dooley DM; Prabhakar R; Roth JP
    J Phys Chem B; 2013 Jan; 117(1):218-29. PubMed ID: 23240607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.