BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11191332)

  • 1. Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica.
    Iijima M; Ishizuka Y; Minokawa T; Amemiya S
    Zygote; 2000; 8 Suppl 1():S80. PubMed ID: 11191332
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulative potential to form an amniotic cavity in mesomeres of a direct developing echinoid, Peronella japonica.
    Kitazawa C; Amemiya S
    Zygote; 2000; 8 Suppl 1():S79. PubMed ID: 11191331
    [No Abstract]   [Full Text] [Related]  

  • 3. Competence of the animal cap to react with the inductive signal from micromere descendants in the hatching blastula stage of echinoid embryos.
    Ishizuka Y; Amemiya S
    Zygote; 2000; 8 Suppl 1():S81. PubMed ID: 11191333
    [No Abstract]   [Full Text] [Related]  

  • 4. Unusual coelom formation in the direct-type developing sand dollar Peronella japonica.
    Tsuchimoto J; Yamada T; Yamaguchi M
    Dev Dyn; 2011 Nov; 240(11):2432-9. PubMed ID: 21972035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endoderm specification and differentiation in Xenopus embryos.
    Horb ME; Slack JM
    Dev Biol; 2001 Aug; 236(2):330-43. PubMed ID: 11476575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes.
    Nakata H; Minokawa T
    Gene Expr Patterns; 2009 Mar; 9(3):152-7. PubMed ID: 19063997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development.
    Yajima M
    Evol Dev; 2007; 9(3):257-66. PubMed ID: 17501749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal morphogenesis.
    Rubin DC
    Curr Opin Gastroenterol; 2007 Mar; 23(2):111-4. PubMed ID: 17268237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allocation of mesendodermal cells during early embryogenesis in the starfish, Asterina pectinifera.
    Kominami T
    J Embryol Exp Morphol; 1984 Dec; 84():177-90. PubMed ID: 6099850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo.
    Benink H; Wray G; Hardin J
    Development; 1997 Sep; 124(18):3461-70. PubMed ID: 9342039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation of cleavage pattern permitting normal development in a sand dollar, Peronella japonica: comparison with other sand dollars.
    Amemiya S; Arakawa E
    Dev Genes Evol; 1996 Sep; 206(2):125-35. PubMed ID: 24173465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenetic capability of epithelial and mesenchymal cells dissociated from swimming starfish embryos.
    Dan-Sohkawa M; Komiya Y; Kaneko H; Yamanaka H
    Prog Clin Biol Res; 1986; 217A():57-60. PubMed ID: 3749159
    [No Abstract]   [Full Text] [Related]  

  • 14. Selective inhibition of gastrulation in the starfish embryo by albuside B, an inosine analogue.
    Shimizu T; Hamada K; Isomura H; Myotoishi Y; Ikegami S; Kaneko H; Dan-Sohkawa M
    FEBS Lett; 1995 Aug; 369(2-3):221-4. PubMed ID: 7544294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells.
    Takenaga M; Fukumoto M; Hori Y
    J Cell Sci; 2007 Jun; 120(Pt 12):2078-90. PubMed ID: 17535850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early development of the gut: new light on an old hypothesis.
    Rawdon BB
    Cell Biol Int; 2001; 25(1):9-15. PubMed ID: 11237404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the fertilisation envelope and specialised microvilli in morphogenesis of starfish embryos.
    Matsunaga M; Uemura I; Tamura M; Nemoto S
    Zygote; 2000; 8 Suppl 1():S65. PubMed ID: 11191319
    [No Abstract]   [Full Text] [Related]  

  • 19. Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo.
    Fukusumi Y; Naruse C; Asano M
    Dev Dyn; 2008 Mar; 237(3):618-29. PubMed ID: 18224709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods.
    Elinson RP
    J Exp Zool B Mol Dev Evol; 2009 Sep; 312(6):526-32. PubMed ID: 18473365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.