These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11191814)
1. Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Cavalca L; Di Gennaro P; Colombo M; Andreoni V; Bernasconi S; Ronco I; Bestetti G Res Microbiol; 2000 Dec; 151(10):877-87. PubMed ID: 11191814 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Cavalca L; Dell'Amico E; Andreoni V Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316 [TBL] [Abstract][Full Text] [Related]
3. Evolution of a degradative bacterial consortium during the enrichment of naphtha solvent. Cavalca L; Confalonieri A; Larcher S; Andreoni V J Appl Microbiol; 2000 Jun; 88(6):1009-18. PubMed ID: 10849177 [TBL] [Abstract][Full Text] [Related]
4. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
5. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Hallier-Soulier S; Ducrocq V; Truffaut N Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042 [TBL] [Abstract][Full Text] [Related]
6. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. Hendrickx B; Dejonghe W; Faber F; Boënne W; Bastiaens L; Verstraete W; Top EM; Springael D FEMS Microbiol Ecol; 2006 Feb; 55(2):262-73. PubMed ID: 16420634 [TBL] [Abstract][Full Text] [Related]
7. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Witzig R; Junca H; Hecht HJ; Pieper DH Appl Environ Microbiol; 2006 May; 72(5):3504-14. PubMed ID: 16672497 [TBL] [Abstract][Full Text] [Related]
8. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Mesarch MB; Nakatsu CH; Nies L Appl Environ Microbiol; 2000 Feb; 66(2):678-83. PubMed ID: 10653735 [TBL] [Abstract][Full Text] [Related]
9. Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria. Baldwin BR; Mesarch MB; Nies L Appl Microbiol Biotechnol; 2000 Jun; 53(6):748-53. PubMed ID: 10919338 [TBL] [Abstract][Full Text] [Related]
10. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Mesarch MB; Nakatsu CH; Nies L Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661 [TBL] [Abstract][Full Text] [Related]
11. Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. Bacosa HP; Mabuhay-Omar JA; Balisco RAT; Omar DM; Inoue C World J Microbiol Biotechnol; 2021 Jun; 37(7):122. PubMed ID: 34151386 [TBL] [Abstract][Full Text] [Related]
12. Aromatic hydrocarbon degradation patterns and catechol 2,3-dioxygenase genes in microbial cultures from deep anoxic hypersaline lakes in the eastern Mediterranean sea. Brusa T; Borin S; Ferrari F; Sorlini C; Corselli C; Daffonchio D Microbiol Res; 2001; 156(1):49-58. PubMed ID: 11372653 [TBL] [Abstract][Full Text] [Related]
13. Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities. Gülensoy N; Alvarez PJ Biodegradation; 1999; 10(5):331-40. PubMed ID: 10870549 [TBL] [Abstract][Full Text] [Related]
14. Extraction and purification of microbial DNA from petroleum-contaminated soils and detection of low numbers of toluene, octane and pesticide degraders by multiplex polymerase chain reaction and Southern analysis. Knaebel DB; Crawford RL Mol Ecol; 1995 Oct; 4(5):579-91. PubMed ID: 7582166 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil. You Y; Shim J; Cho CH; Ryu MH; Shea PJ; Kamala-Kannan S; Chae JC; Oh BT J Basic Microbiol; 2013 May; 53(5):469-75. PubMed ID: 22915285 [TBL] [Abstract][Full Text] [Related]
17. Degradation of benzene, toluene, and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated area. Ortega-González DK; Zaragoza D; Aguirre-Garrido J; Ramírez-Saad H; Hernández-Rodríguez C; Jan-Roblero J Folia Microbiol (Praha); 2013 Nov; 58(6):569-77. PubMed ID: 23564628 [TBL] [Abstract][Full Text] [Related]
18. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Kim D; Kim YS; Kim SK; Kim SW; Zylstra GJ; Kim YM; Kim E Appl Environ Microbiol; 2002 Jul; 68(7):3270-8. PubMed ID: 12089003 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation of p-xylene-a comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. Miri S; Rasooli A; Brar SK; Rouissi T; Martel R Environ Sci Pollut Res Int; 2022 Mar; 29(15):21465-21479. PubMed ID: 34762239 [TBL] [Abstract][Full Text] [Related]
20. Tandem biodegradation of BTEX components by two Pseudomonas sp. Attaway HH; Schmidt MG Curr Microbiol; 2002 Jul; 45(1):30-6. PubMed ID: 12029524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]