BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11192378)

  • 1. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve.
    Ayotte DC; Ito K; Perren SM; Tepic S
    J Biomech Eng; 2000 Dec; 122(6):587-93. PubMed ID: 11192378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow.
    Vergroesen PA; van der Veen AJ; Emanuel KS; van Dieën JH; Smit TH
    J Biomech; 2016 Apr; 49(6):857-863. PubMed ID: 26684430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study.
    Ayotte DC; Ito K; Tepic S
    J Orthop Res; 2001 Nov; 19(6):1073-7. PubMed ID: 11781007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions.
    Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H
    J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc.
    Riches PE; McNally DS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model.
    Martinez JB; Oloyede VO; Broom ND
    Med Eng Phys; 1997 Mar; 19(2):145-56. PubMed ID: 9203149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs.
    Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
    Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K
    J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression.
    Lu YM; Hutton WC; Gharpuray VM
    J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study.
    Emanuel KS; van der Veen AJ; Rustenburg CME; Smit TH; Kingma I
    J Biomech; 2018 Mar; 70():10-15. PubMed ID: 29096981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model.
    Iatridis JC; Laible JP; Krag MH
    J Biomech Eng; 2003 Feb; 125(1):12-24. PubMed ID: 12661193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.
    Silva P; Crozier S; Veidt M; Pearcy MJ
    J Mater Sci Mater Med; 2005 Jul; 16(7):663-9. PubMed ID: 15965599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis.
    Yao H; Gu WY
    Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid-flow dependent response of intervertebral discs under cyclic loading: On the role of specimen preparation and preconditioning.
    Schmidt H; Schilling C; Reyna ALP; Shirazi-Adl A; Dreischarf M
    J Biomech; 2016 Apr; 49(6):846-856. PubMed ID: 26549766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.