These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11192569)

  • 21. Wheelchair tiedown and occupant restraint system issues in the real world and the virtual world: combining qualitative and quantitative research approaches.
    Wolf PJ; van Roosmalen L; Bertocci GE
    Assist Technol; 2007; 19(4):188-96; quiz 197-8. PubMed ID: 18335708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of virtual and real electric powered wheelchair driving using a position sensing joystick and an isometric joystick.
    Cooper RA; Spaeth DM; Jones DK; Boninger ML; Fitzgerald SG; Guo S
    Med Eng Phys; 2002 Dec; 24(10):703-8. PubMed ID: 12460730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Training wheelchair navigation in immersive virtual environments for patients with spinal cord injury - end-user input to design an effective system.
    Nunnerley J; Gupta S; Snell D; King M
    Disabil Rehabil Assist Technol; 2017 May; 12(4):417-423. PubMed ID: 27376716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and user validation of driving tasks for a power wheelchair simulator.
    Archambault PS; Blackburn É; Reid D; Routhier F; Miller WC
    Disabil Rehabil; 2017 Jul; 39(15):1549-1556. PubMed ID: 27669905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability and Workload of the Virtual Reality-Based Simulator-2.
    Kamaraj DC; Dicianno BE; Mahajan HP; Buhari AM; Cooper RA
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1085-1092.e1. PubMed ID: 26921682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selecting a Best Compromise Direction for a Powered Wheelchair Using PROMETHEE.
    Haddad MJ; Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):228-235. PubMed ID: 30640619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Virtual Technology as an Intervention for Wheelchair Skills Training: A Systematic Review.
    Lam JF; Gosselin L; Rushton PW
    Arch Phys Med Rehabil; 2018 Nov; 99(11):2313-2341. PubMed ID: 29530515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1215-1222. PubMed ID: 29877846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres.
    John NW; Pop SR; Day TW; Ritsos PD; Headleand CJ
    IEEE Trans Vis Comput Graph; 2018 May; 24(5):1867-1878. PubMed ID: 28475060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of a virtual reality wheelchair simulator to include qualitative and quantitative performance metrics.
    Harrison CS; Grant PM; Conway BA
    Assist Technol; 2010; 22(1):20-31. PubMed ID: 20402044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Important wheelchair skills for new manual wheelchair users: health care professional and wheelchair user perspectives.
    Morgan KA; Engsberg JR; Gray DB
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):28-38. PubMed ID: 26138222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interrater Reliability of the Power Mobility Road Test in the Virtual Reality-Based Simulator-2.
    Kamaraj DC; Dicianno BE; Mahajan HP; Buhari AM; Cooper RA
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1078-84. PubMed ID: 26921680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
    Tsui CS; Gan JQ; Hu H
    Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preliminary evaluation of variable compliance joystick for people with multiple sclerosis.
    Mahajan HP; Spaeth DM; Dicianno BE; Brown K; Cooper RA
    J Rehabil Res Dev; 2014; 51(6):951-62. PubMed ID: 25356558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual community centre for power wheelchair training: Experience of children and clinicians.
    Torkia C; Ryan SE; Reid D; Boissy P; Lemay M; Routhier F; Contardo R; Woodhouse J; Archambault PS
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):46-55. PubMed ID: 29092651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulation to aid the risk assessment of wheelchair and special seating systems used in transport.
    Rogers PD; Gibson C; Wilcox SJ; Chong A
    J Med Eng Technol; 2009; 33(8):642-9. PubMed ID: 19848858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.