BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11192726)

  • 41. Formation of flavin semiquinone during the reduction of P450 BM3 reductase domain with NADPH.
    Munro AW; Coggins JR; Lindsay JG; Daff S; Chapman SK
    Biochem Soc Trans; 1996 Feb; 24(1):18S. PubMed ID: 8674656
    [No Abstract]   [Full Text] [Related]  

  • 42. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and spectroscopic analysis of the F393H mutant of flavocytochrome P450 BM3.
    Ost TW; Munro AW; Mowat CG; Taylor PR; Pesseguiero A; Fulco AJ; Cho AK; Cheesman MA; Walkinshaw MD; Chapman SK
    Biochemistry; 2001 Nov; 40(45):13430-8. PubMed ID: 11695889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set.
    Girvan HM; Marshall KR; Lawson RJ; Leys D; Joyce MG; Clarkson J; Smith WE; Cheesman MR; Munro AW
    J Biol Chem; 2004 May; 279(22):23274-86. PubMed ID: 15020591
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alkane metabolism by cytochrome P450 BM3.
    Munro AW; Lindsay JG; Coggins JR
    Biochem Soc Trans; 1993 Nov; 21(4):412S. PubMed ID: 8131986
    [No Abstract]   [Full Text] [Related]  

  • 46. Glutamate-haem ester bond formation is disfavoured in flavocytochrome P450 BM3: characterization of glutamate substitution mutants at the haem site of P450 BM3.
    Girvan HM; Levy CW; Williams P; Fisher K; Cheesman MR; Rigby SE; Leys D; Munro AW
    Biochem J; 2010 Apr; 427(3):455-66. PubMed ID: 20180779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR studies of substrate binding to cytochrome P450 BM3: comparisons to cytochrome P450 cam.
    Modi S; Primrose WU; Boyle JM; Gibson CF; Lian LY; Roberts GC
    Biochemistry; 1995 Jul; 34(28):8982-8. PubMed ID: 7619797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3.
    Govindaraj S; Poulos TL
    Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of hydroxlated flavonoids with cytochrome P450 BM3 variant F87V and their antioxidative activities.
    Kitamura E; Otomatsu T; Maeda C; Aoki Y; Ota C; Misawa N; Shindo K
    Biosci Biotechnol Biochem; 2013; 77(6):1340-3. PubMed ID: 23748780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains.
    Munro AW; Daff S; Coggins JR; Lindsay JG; Chapman SK
    Eur J Biochem; 1996 Jul; 239(2):403-9. PubMed ID: 8706747
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis.
    van Vugt-Lussenburg BM; Stjernschantz E; Lastdrager J; Oostenbrink C; Vermeulen NP; Commandeur JN
    J Med Chem; 2007 Feb; 50(3):455-61. PubMed ID: 17266197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A role for the strained phenylalanine ring rotation induced by substrate binding to cytochrome CYP102A1.
    Haines DC
    Protein Pept Lett; 2006; 13(10):977-80. PubMed ID: 17168818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3.
    Ost TW; Miles CS; Munro AW; Murdoch J; Reid GA; Chapman SK
    Biochemistry; 2001 Nov; 40(45):13421-9. PubMed ID: 11695888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst.
    Li HM; Mei LH; Urlacher VB; Schmid RD
    Appl Biochem Biotechnol; 2008 Jan; 144(1):27-36. PubMed ID: 18415984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flavocytochromes: transceivers and relays in biological electron transfer.
    Chapman SK; Welsh F; Moysey R; Mowat C; Doherty MK; Turner KL; Munro AW; Reid GA
    Biochem Soc Trans; 1999 Feb; 27(2):185-9. PubMed ID: 10093731
    [No Abstract]   [Full Text] [Related]  

  • 56. Resonance Raman spectroscopic studies on intact cytochrome P450 BM3.
    Munro AW; Lindsay JG; Coggins JR; MacDonald I; Smith WE; Rospendowski BN
    Biochem Soc Trans; 1994 Feb; 22(1):54S. PubMed ID: 8206282
    [No Abstract]   [Full Text] [Related]  

  • 57. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein.
    Fernando H; Halpert JR; Davydov DR
    Arch Biochem Biophys; 2008 Mar; 471(1):20-31. PubMed ID: 18086551
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phe393 mutants of cytochrome P450 BM3 with modified heme redox potentials have altered heme vinyl and propionate conformations.
    Chen Z; Ost TW; Schelvis JP
    Biochemistry; 2004 Feb; 43(7):1798-808. PubMed ID: 14967021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decreased substrate affinity upon alteration of the substrate-docking region in cytochrome P450(BM-3).
    Maves SA; Yeom H; McLean MA; Sligar SG
    FEBS Lett; 1997 Sep; 414(2):213-8. PubMed ID: 9315688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating the function of cytochrome P450 BM-3: a role for the phylogenetically conserved tryptophan residue?
    Munro AW; Malarkey K; Miles JS
    Biochem Soc Trans; 1993 Feb; 21(1):66S. PubMed ID: 8449349
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.