BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11193103)

  • 1. Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat.
    Einevoll GT; Heggelund P
    Vis Neurosci; 2000; 17(6):871-85. PubMed ID: 11193103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.
    Ruksenas O; Fjeld IT; Heggelund P
    Vis Neurosci; 2000; 17(6):855-70. PubMed ID: 11193102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells.
    Heiberg T; Hagen E; Halnes G; Einevoll GT
    PLoS Comput Biol; 2016 May; 12(5):e1004929. PubMed ID: 27203421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: receptive-field properties and retinal inputs.
    Mastronarde DN
    Vis Neurosci; 1992 May; 8(5):407-41. PubMed ID: 1586644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli.
    Einevoll GT; Plesser HE
    Network; 2002 Nov; 13(4):503-30. PubMed ID: 12463342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells.
    Martínez-Cañada P; Mobarhan MH; Halnes G; Fyhn M; Morillas C; Pelayo F; Einevoll GT
    PLoS Comput Biol; 2018 Jan; 14(1):e1005930. PubMed ID: 29377888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain stem modulation of spatial receptive field properties of single cells in the dorsal lateral geniculate nucleus of the cat.
    Hartveit E; Ramberg SI; Heggelund P
    J Neurophysiol; 1993 Oct; 70(4):1644-55. PubMed ID: 8283220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brainstem modulation of visual response properties of single cells in the dorsal lateral geniculate nucleus of cat.
    Fjeld IT; Ruksenas O; Heggelund P
    J Physiol; 2002 Sep; 543(Pt 2):541-54. PubMed ID: 12205188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat.
    Dubin MW; Cleland BG
    J Neurophysiol; 1977 Mar; 40(2):410-27. PubMed ID: 191574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat.
    Soodak RE; Shapley RM; Kaplan E
    J Neurophysiol; 1987 Aug; 58(2):267-75. PubMed ID: 3655866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.
    Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA
    J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity tuning of cells in dorsal lateral geniculate nucleus and retina of the cat.
    Frishman LJ; Schweitzer-Tong DE; Goldstein EB
    J Neurophysiol; 1983 Dec; 50(6):1393-414. PubMed ID: 6663334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.
    Procyk CA; Eleftheriou CG; Storchi R; Allen AE; Milosavljevic N; Brown TM; Lucas RJ
    J Neurophysiol; 2015 Aug; 114(2):1321-30. PubMed ID: 26084909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation.
    Hartveit E; Heggelund P
    J Neurophysiol; 1994 Sep; 72(3):1278-89. PubMed ID: 7807211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional consequences of neuronal divergence within the retinogeniculate pathway.
    Yeh CI; Stoelzel CR; Weng C; Alonso JM
    J Neurophysiol; 2009 Apr; 101(4):2166-85. PubMed ID: 19176606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus.
    Cudeiro J; Sillito AM
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):481-92. PubMed ID: 8821144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN).
    Sillito AM; Kemp JA
    Brain Res; 1983 Oct; 277(1):63-77. PubMed ID: 6640295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling.
    Charalambakis NE; Govindaiah G; Campbell PW; Guido W
    J Neurosci; 2019 May; 39(20):3856-3866. PubMed ID: 30842249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological inactivation of pretectal nuclei reveals different modulatory effects on retino-geniculate transmission by X and Y cells in the cat.
    Funke K; Eysel UT
    Vis Neurosci; 1995; 12(1):21-33. PubMed ID: 7718500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasts in spatial organization of receptive fields at geniculate and retinal levels: centre, surround and outer surround.
    Hammond P
    J Physiol; 1973 Jan; 228(1):115-37. PubMed ID: 4686020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.