These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11193678)
21. On-host control of the brown dog tick Rhipicephalus sanguineus Latreille (Acari: Ixodidae) by Metarhizium brunneum (Hypocreales: Clavicipitaceae). Rot A; Gindin G; Ment D; Mishoutchenko A; Glazer I; Samish M Vet Parasitol; 2013 Mar; 193(1-3):229-37. PubMed ID: 23267821 [TBL] [Abstract][Full Text] [Related]
22. Biocontrol of ticks. Samish M Ann N Y Acad Sci; 2000; 916():172-8. PubMed ID: 11193617 [TBL] [Abstract][Full Text] [Related]
23. Pathogenicity of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to tick eggs and the effect of egg cuticular lipids on conidia development. Gindin G; Ment D; Rot A; Glazer I; Samish M J Med Entomol; 2009 May; 46(3):531-8. PubMed ID: 19496424 [TBL] [Abstract][Full Text] [Related]
24. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Samish M; Rot A; Ment D; Barel S; Glazer I; Gindin G Vet Parasitol; 2014 Dec; 206(3-4):258-66. PubMed ID: 25468024 [TBL] [Abstract][Full Text] [Related]
25. Phylogenetic relationships and effectiveness of four Beauveria bassiana sensu lato strains for control of Haemaphysalis longicornis (Acari: Ixodidae). Zhendong H; Guangfu Y; Zhong Z; Ruiling Z Exp Appl Acarol; 2019 Jan; 77(1):83-92. PubMed ID: 30488158 [TBL] [Abstract][Full Text] [Related]
26. Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). Benjamin MA; Zhioua E; Ostfeld RS J Med Entomol; 2002 Sep; 39(5):723-8. PubMed ID: 12349854 [TBL] [Abstract][Full Text] [Related]
27. Experimental transmission of field Anaplasma marginale and the A. centrale vaccine strain by Hyalomma excavatum, Rhipicephalus sanguineus and Rhipicephalus (Boophilus) annulatus ticks. Shkap V; Kocan K; Molad T; Mazuz M; Leibovich B; Krigel Y; Michoytchenko A; Blouin E; de la Fuente J; Samish M; Mtshali M; Zweygarth E; Fleiderovich EL; Fish L Vet Microbiol; 2009 Mar; 134(3-4):254-60. PubMed ID: 18823724 [TBL] [Abstract][Full Text] [Related]
28. Biological Activity of Local Entomopathogenic Nematodes from Two Different Origins Based on Various Temperatures. Widiyaningrum P; Fauziyah L; Rini Indriyanti D Pak J Biol Sci; 2018; 21(2):95-100. PubMed ID: 30221885 [TBL] [Abstract][Full Text] [Related]
29. Entomopathogenic nematodes for the management of Agrotis ipsilon: effect of instar, nematode species and nematode production method. Ebssa L; Koppenhöfer AM Pest Manag Sci; 2012 Jun; 68(6):947-57. PubMed ID: 22344709 [TBL] [Abstract][Full Text] [Related]
30. Characterization of midgut and salivary gland proteins of Hyalomma dromedarii females controlled by entomopathogenic nematodes. El-Sadawy HA; Zayed AA; El-Shazly A Pak J Biol Sci; 2008 Feb; 11(4):508-16. PubMed ID: 18817119 [TBL] [Abstract][Full Text] [Related]
31. Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Alves FM; Bernardo CC; Paixão FR; Barreto LP; Luz C; Humber RA; Fernandes ÉK Parasitol Res; 2017 Jan; 116(1):111-121. PubMed ID: 27704216 [TBL] [Abstract][Full Text] [Related]
32. Laboratory and field evaluation of entomogenous fungi for tick control. Kaaya GP Ann N Y Acad Sci; 2000; 916():559-64. PubMed ID: 11193673 [TBL] [Abstract][Full Text] [Related]
33. Susceptibility of the filbertworm (Cydia latiferreana, Lepidoptera: Tortricidae) and filbert weevil (Curculio occidentalis, Coleoptera: Curculionidae) to entomopathogenic nematodes. Bruck DJ; Walton VM J Invertebr Pathol; 2007 Sep; 96(1):93-6. PubMed ID: 17434523 [TBL] [Abstract][Full Text] [Related]
34. Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR. Campos-Herrera R; El-Borai FE; Duncan LW J Invertebr Pathol; 2012 Oct; 111(2):126-35. PubMed ID: 22841945 [TBL] [Abstract][Full Text] [Related]
35. Entomogenous fungi as promising biopesticides for tick control. Kaay GP; Hassan S Exp Appl Acarol; 2000; 24(12):913-26. PubMed ID: 11354619 [TBL] [Abstract][Full Text] [Related]
36. Biological control of ticks. Samish M; Ginsberg H; Glazer I Parasitology; 2004; 129 Suppl():S389-403. PubMed ID: 15938520 [TBL] [Abstract][Full Text] [Related]
37. Pen studies on the control of cattle tick (Rhipicephalus (Boophilus) microplus) with Metarhizium anisopliae (Sorokin). Leemon DM; Turner LB; Jonsson NN Vet Parasitol; 2008 Oct; 156(3-4):248-60. PubMed ID: 18639382 [TBL] [Abstract][Full Text] [Related]
38. Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) HP88 for biological control of Rhipicephalus microplus (Acari: Ixodidae): the effect of different exposure times of engorged females to the nematodes. Monteiro CM; Prata MC; Faza A; Batista ES; Dolinski C; Furlong J Vet Parasitol; 2012 Apr; 185(2-4):364-7. PubMed ID: 22093907 [TBL] [Abstract][Full Text] [Related]
39. Assessment of fungal isolates for development of a myco-acaricide for cattle tick control. Polar P; Kairo MT; Peterkin D; Moore D; Pegram R; John SA Vector Borne Zoonotic Dis; 2005; 5(3):276-84. PubMed ID: 16187897 [TBL] [Abstract][Full Text] [Related]
40. PRELIMINARY SURVEY OF ENTOMOPATHOGENIC NEMATODES IN UPPER NORTHERN THAILAND. Vitta A; Fukruksa C; Yimthin T; Deelue K; Sarai C; Polseela R; Thanwisai A Southeast Asian J Trop Med Public Health; 2017 Jan; 48(1):18-26. PubMed ID: 29644816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]