BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11194082)

  • 1. Validation of a decision support system for the cytodiagnosis of fine needle aspirates of the breast using a prospectively collected dataset from multiple observers in a working clinical environment.
    Cross SS; Stephenson TJ; Mohammed T; Harrisont RF
    Cytopathology; 2000 Dec; 11(6):503-12. PubMed ID: 11194082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a statistically derived decision tree for the cytodiagnosis of fine needle aspirates of the breast (FNAB).
    Cross SS; Dubé AK; Johnson JS; McCulloch TA; Quincey C; Harrison RF; Ma Z
    Cytopathology; 1998 Jun; 9(3):178-87. PubMed ID: 9638379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observer study of a prototype clinical decision support system for breast cancer diagnosis using dynamic contrast-enhanced MRI.
    Boroczky L; Simpson M; Abe H; Drysdale J
    AJR Am J Roentgenol; 2013 Feb; 200(2):277-83. PubMed ID: 23345346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network modeling for surgical decisions on traumatic brain injury patients.
    Li YC; Liu L; Chiu WT; Jian WS
    Int J Med Inform; 2000 Jan; 57(1):1-9. PubMed ID: 10708251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image analysis of low magnification images of fine needle aspirates of the breast produces useful discrimination between benign and malignant cases.
    Cross SS; Bury JP; Stephenson TJ; Harrison RF
    Cytopathology; 1997 Aug; 8(4):265-73. PubMed ID: 9252744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereotactic fine-needle aspiration cytology of nonpalpable breast lesions: an analysis of 258 consecutive aspirates.
    Sarfati MR; Fox KA; Warneke JA; Fajardo LL; Hunter GC; Rappaport WD
    Am J Surg; 1994 Dec; 168(6):529-31; discussion 531-2. PubMed ID: 7977990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A clinical decision support system for prediction of pregnancy outcome in pregnant women with systemic lupus erythematosus.
    Paydar K; Niakan Kalhori SR; Akbarian M; Sheikhtaheri A
    Int J Med Inform; 2017 Jan; 97():239-246. PubMed ID: 27919382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-needle aspiration biopsy of nonpalpable breast lesions: challenges and promises.
    Masood S
    Cancer; 1998 Aug; 84(4):197-9. PubMed ID: 9723592
    [No Abstract]   [Full Text] [Related]  

  • 9. Breast lesions: evaluation with US strain imaging--clinical experience of multiple observers.
    Regner DM; Hesley GK; Hangiandreou NJ; Morton MJ; Nordland MR; Meixner DD; Hall TJ; Farrell MA; Mandrekar JN; Harmsen WS; Charboneau JW
    Radiology; 2006 Feb; 238(2):425-37. PubMed ID: 16436810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Use of multilayer perception artificial neutral networks for the prediction of the probability of malignancy in adnexal tumors].
    Smoleń A; Czekierdowski A; Stachowicz N; Kotarski J
    Ginekol Pol; 2003 Sep; 74(9):855-62. PubMed ID: 14674136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast Cancer Detection with Reduced Feature Set.
    Mert A; Kılıç N; Bilgili E; Akan A
    Comput Math Methods Med; 2015; 2015():265138. PubMed ID: 26078774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data.
    Woods BJ; Clymer BD; Kurc T; Heverhagen JT; Stevens R; Orsdemir A; Bulan O; Knopp MV
    J Magn Reson Imaging; 2007 Mar; 25(3):495-501. PubMed ID: 17279534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Breast Cancer Risk with an Artificial Neural Network.
    Sepandi M; Taghdir M; Rezaianzadeh A; Rahimikazerooni S
    Asian Pac J Cancer Prev; 2018 Apr; 19(4):1017-1019. PubMed ID: 29693975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a clinical decision rule for triage of women with palpable breast masses.
    Reeves MJ; Osuch JR; Pathak DR
    J Clin Epidemiol; 2003 Jul; 56(7):636-45. PubMed ID: 12921932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural networks applied to survival prediction in breast cancer.
    Lundin M; Lundin J; Burke HB; Toikkanen S; Pylkkänen L; Joensuu H
    Oncology; 1999 Nov; 57(4):281-6. PubMed ID: 10575312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network: improving the quality of breast biopsy recommendations.
    Baker JA; Kornguth PJ; Lo JY; Floyd CE
    Radiology; 1996 Jan; 198(1):131-5. PubMed ID: 8539365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunocytochemical determination of estrogen and progesterone receptors on 219 fine-needle aspirates of breast cancer. A prospective study.
    Marrazzo A; Taormina P; Leonardi P; Lupo F; Filosto S
    Anticancer Res; 1995; 15(2):521-6. PubMed ID: 7763033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of fine needle aspiration and Tru-Cut biopsy of palpable mammary lesions.
    Scopa CD; Koukouras D; Spiliotis J; Harkoftakis J; Koureleas S; Kyriakopoulou D; Tzoracoleftherakis E
    Cancer Detect Prev; 1996; 20(6):620-4. PubMed ID: 8939348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine needle aspiration cytology of the breast: factors affecting sensitivity.
    Brown LA; Coghill SB
    Cytopathology; 1991; 2(2):67-74. PubMed ID: 1912363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.