BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 11194098)

  • 1. Knee biomechanics of the dynamic squat exercise.
    Escamilla RF
    Med Sci Sports Exerc; 2001 Jan; 33(1):127-41. PubMed ID: 11194098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of technique variations on knee biomechanics during the squat and leg press.
    Escamilla RF; Fleisig GS; Zheng N; Lander JE; Barrentine SW; Andrews JR; Bergemann BW; Moorman CT
    Med Sci Sports Exerc; 2001 Sep; 33(9):1552-66. PubMed ID: 11528346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises.
    Stuart MJ; Meglan DA; Lutz GE; Growney ES; An KN
    Am J Sports Med; 1996; 24(6):792-9. PubMed ID: 8947402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises.
    Escamilla RF; Fleisig GS; Zheng N; Barrentine SW; Wilk KE; Andrews JR
    Med Sci Sports Exerc; 1998 Apr; 30(4):556-69. PubMed ID: 9565938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises.
    Wilk KE; Escamilla RF; Fleisig GS; Barrentine SW; Andrews JR; Boyd ML
    Am J Sports Med; 1996; 24(4):518-27. PubMed ID: 8827313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cruciate ligament force during the wall squat and the one-leg squat.
    Escamilla RF; Zheng N; Imamura R; Macleod TD; Edwards WB; Hreljac A; Fleisig GS; Wilk KE; Moorman CT; Andrews JR
    Med Sci Sports Exerc; 2009 Feb; 41(2):408-17. PubMed ID: 19127183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat.
    Kulas AS; Hortobágyi T; DeVita P
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):16-21. PubMed ID: 21839557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical model of the knee for estimation of internal forces during exercise.
    Zheng N; Fleisig GS; Escamilla RF; Barrentine SW
    J Biomech; 1998 Oct; 31(10):963-7. PubMed ID: 9840764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction.
    Tsai LC; Powers CM
    Am J Sports Med; 2013 Feb; 41(2):423-9. PubMed ID: 23271006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion.
    Singerman R; Berilla J; Archdeacon M; Peyser A
    J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of tibiofemoral joint forces during open-kinetic-chain and closed-kinetic-chain exercises.
    Lutz GE; Palmitier RA; An KN; Chao EY
    J Bone Joint Surg Am; 1993 May; 75(5):732-9. PubMed ID: 8501090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the joint torques and loadings during squatting at the Smith machine.
    Biscarini A; Benvenuti P; Botti F; Mastrandrea F; Zanuso S
    J Sports Sci; 2011 Mar; 29(5):457-69. PubMed ID: 21225486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing hip and knee flexion during a drop-jump task reduces tibiofemoral shear and compressive forces: implications for ACL injury prevention training.
    Tsai LC; Ko YA; Hammond KE; Xerogeanes JW; Warren GL; Powers CM
    J Sports Sci; 2017 Dec; 35(24):2405-2411. PubMed ID: 28006992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knee joint mechanics under quadriceps--hamstrings muscle forces are influenced by tibial restraint.
    Mesfar W; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):841-8. PubMed ID: 16774800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation.
    Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE
    J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study.
    Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD
    J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament.
    Grood ES; Suntay WJ; Noyes FR; Butler DL
    J Bone Joint Surg Am; 1984 Jun; 66(5):725-34. PubMed ID: 6725319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of the knee joint in flexion under various quadriceps forces.
    Mesfar W; Shirazi-Adl A
    Knee; 2005 Dec; 12(6):424-34. PubMed ID: 15939592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of cruciate-ligament loading on muscle forces and external load.
    Pandy MG; Shelburne KB
    J Biomech; 1997 Oct; 30(10):1015-24. PubMed ID: 9391868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.