These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 11194103)
1. Energy system contribution during 200- to 1500-m running in highly trained athletes. Spencer MR; Gastin PB Med Sci Sports Exerc; 2001 Jan; 33(1):157-62. PubMed ID: 11194103 [TBL] [Abstract][Full Text] [Related]
2. Energy system contribution to 400-metre and 800-metre track running. Duffield R; Dawson B; Goodman C J Sports Sci; 2005 Mar; 23(3):299-307. PubMed ID: 15966348 [TBL] [Abstract][Full Text] [Related]
3. Energy system contribution to 100-m and 200-m track running events. Duffield R; Dawson B; Goodman C J Sci Med Sport; 2004 Sep; 7(3):302-13. PubMed ID: 15518295 [TBL] [Abstract][Full Text] [Related]
4. Energy system contribution to 1500- and 3000-metre track running. Duffield R; Dawson B; Goodman C J Sports Sci; 2005 Oct; 23(10):993-1002. PubMed ID: 16194976 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running. Zouhal H; Jabbour G; Jacob C; Duvigneau D; Botcazou M; Ben Abderrahaman A; Prioux J; Moussa E J Strength Cond Res; 2010 Sep; 24(9):2309-15. PubMed ID: 20703164 [TBL] [Abstract][Full Text] [Related]
6. The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance. Nevill AM; Ramsbottom R; Nevill ME; Newport S; Williams C J Sports Med Phys Fitness; 2008 Jun; 48(2):138-42. PubMed ID: 18427406 [TBL] [Abstract][Full Text] [Related]
7. Energy system contribution to Olympic distances in flat water kayaking (500 and 1,000 m) in highly trained subjects. Zouhal H; Le Douairon Lahaye S; Ben Abderrahaman A; Minter G; Herbez R; Castagna C J Strength Cond Res; 2012 Mar; 26(3):825-31. PubMed ID: 22297414 [TBL] [Abstract][Full Text] [Related]
8. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes. Nummela A; Rusko H Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206 [TBL] [Abstract][Full Text] [Related]
9. Energy system contributions in middle-distance running events. Hill DW J Sports Sci; 1999 Jun; 17(6):477-83. PubMed ID: 10404496 [TBL] [Abstract][Full Text] [Related]
11. Off seasonal and pre-seasonal assessment of circulating energy sources during prolonged running at the anaerobic threshold in competitive triathletes. Knoepfli B; Riddell MC; Ganzoni E; Burki A; Villiger B; von Duvillard SP Br J Sports Med; 2004 Aug; 38(4):402-7. PubMed ID: 15273171 [TBL] [Abstract][Full Text] [Related]
12. The bioenergetics of optimal performances in middle-distance and long-distance track running. Ward-Smith AJ J Biomech; 1999 May; 32(5):461-5. PubMed ID: 10326999 [TBL] [Abstract][Full Text] [Related]
13. Pattern of energy expenditure during simulated competition. Foster C; De Koning JJ; Hettinga F; Lampen J; La Clair KL; Dodge C; Bobbert M; Porcari JP Med Sci Sports Exerc; 2003 May; 35(5):826-31. PubMed ID: 12750593 [TBL] [Abstract][Full Text] [Related]
14. Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners. Craig IS; Morgan DW Med Sci Sports Exerc; 1998 Nov; 30(11):1631-6. PubMed ID: 9813877 [TBL] [Abstract][Full Text] [Related]
15. Energy Cost of Continuous Shuttle Running: Comparison of 4 Measurement Methods. Ciprandi D; Lovecchio N; Piacenza M; Limonta E; Esposito F; Sforza C; Zago M J Strength Cond Res; 2018 Aug; 32(8):2265-2272. PubMed ID: 30044342 [TBL] [Abstract][Full Text] [Related]
16. Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. Maldonado S; Mujika I; Padilla S Int J Sports Med; 2002 May; 23(4):268-72. PubMed ID: 12015627 [TBL] [Abstract][Full Text] [Related]
17. Influence of the oxygen uptake slow component on the aerobic energy cost of high-intensity submaximal treadmill running in humans. Bernard O; Maddio F; Ouattara S; Jimenez C; Charpenet A; Melin B; Bittel J Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):578-85. PubMed ID: 9840416 [TBL] [Abstract][Full Text] [Related]
18. Modelling of aerobic and anaerobic energy production in middle-distance running. Busso T; Chatagnon M Eur J Appl Physiol; 2006 Aug; 97(6):745-54. PubMed ID: 16838187 [TBL] [Abstract][Full Text] [Related]
19. Normobaric Hypoxia Reduces V˙O2 at Different Intensities in Highly Trained Runners. Sharma AP; Saunders PU; Garvican-Lewis LA; Clark B; Gore CJ; Thompson KG; Périard JD Med Sci Sports Exerc; 2019 Jan; 51(1):174-182. PubMed ID: 30095742 [TBL] [Abstract][Full Text] [Related]
20. Comparison of net anaerobic energy utilisation estimated by plasma lactate accumulation rate and accumulated oxygen deficit in Thoroughbred horses. Ohmura H; Mukai K; Takahashi T; Matsui A; Hiraga A; Jones JH Equine Vet J Suppl; 2010 Nov; (38):62-9. PubMed ID: 21058984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]