These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 11194640)
21. Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. Shimazaki A; Inui K; Azuma Y; Nishimura N; Yamano Y J Bone Joint Surg Br; 2000 Sep; 82(7):1077-82. PubMed ID: 11041605 [TBL] [Abstract][Full Text] [Related]
22. Distraction osteogenesis of the canine mandible: the impact of acute callus manipulation on vascularization and early bone formation. Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B J Oral Maxillofac Surg; 2005 Jan; 63(1):93-102. PubMed ID: 15635563 [TBL] [Abstract][Full Text] [Related]
23. Internal craniofacial distraction with biodegradable devices: early stabilization and protected bone regeneration. Cohen SR; Holmes RE; Amis P; Fichtner H J Craniofac Surg; 2000 Jul; 11(4):354-66. PubMed ID: 11314384 [TBL] [Abstract][Full Text] [Related]
24. Linear increase in axial stiffness of regenerate callus during limb lengthening. Taylor KF; Rafiee B; Inoue N; McHale KA; Howard RS; Chao EY Clin Orthop Relat Res; 2005 Jun; (435):239-44. PubMed ID: 15930945 [TBL] [Abstract][Full Text] [Related]
25. Reamed Intramedullary Nailing has an Adverse Effect on Bone Regeneration During the Distraction Phase in Tibial Lengthening. Ryu KJ; Kim BH; Hwang JH; Kim HW; Lee DH Clin Orthop Relat Res; 2016 Mar; 474(3):816-24. PubMed ID: 26507338 [TBL] [Abstract][Full Text] [Related]
26. Comparison of bone mineral parameter measurements by dual-energy x-ray absorptiometry with bone stiffness measurements as indicators of the load-bearing capacity of regenerating bone. Floerkemeier T; Wellmann M; Thorey F; Hurschler C; Witte F; Windhagen H J Orthop Trauma; 2010 Mar; 24(3):181-7. PubMed ID: 20182255 [TBL] [Abstract][Full Text] [Related]
27. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure. Song MH; Kim TJ; Kang SH; Song HR BMC Musculoskelet Disord; 2019 Mar; 20(1):108. PubMed ID: 30871538 [TBL] [Abstract][Full Text] [Related]
28. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639 [TBL] [Abstract][Full Text] [Related]
29. Possible problems of moulding the regenerate in mandibular distraction osteogenesis -- experimental aspects in a canine model. Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B J Craniomaxillofac Surg; 2005 Dec; 33(6):377-85. PubMed ID: 16253512 [TBL] [Abstract][Full Text] [Related]
30. [Evaluation of potential damage to the regenerate during callus molding after mandibular distraction osteogenesis. Experimental study using an animal model]. Kunz C; Adolphs N; Buescher P; Hammer B; Rahn B Mund Kiefer Gesichtschir; 2005 May; 9(3):169-76. PubMed ID: 15856346 [TBL] [Abstract][Full Text] [Related]
31. [Analysis of the results of bone healing in femurs lengthened by the gradual distraction method in children and adolescents]. Jochymek J; Skvaril J; Ondrus S Acta Chir Orthop Traumatol Cech; 2009 Oct; 76(5):399-403. PubMed ID: 19912704 [TBL] [Abstract][Full Text] [Related]
32. The influence of compression on the healing of experimental tibial fractures. Sigurdsen U; Reikeras O; Utvag SE Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739 [TBL] [Abstract][Full Text] [Related]
33. Prediction of Callus Subsidence in Distraction Osteogenesis Using Callus Formation Scoring System: Preliminary Study. Tirawanish P; Eamsobhana P Orthop Surg; 2018 May; 10(2):121-127. PubMed ID: 29767473 [TBL] [Abstract][Full Text] [Related]
34. Mandibular distraction osteogenesis: a rabbit model using a novel experimental design. Al-Sebaei MO; Gagari E; Papageorge M J Oral Maxillofac Surg; 2005 May; 63(5):664-72. PubMed ID: 15883942 [TBL] [Abstract][Full Text] [Related]
35. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis]. Yukata K; Takahashi M; Yasui N Clin Calcium; 2009 May; 19(5):641-6. PubMed ID: 19398830 [TBL] [Abstract][Full Text] [Related]
36. Submuscular plating after distraction osteogenesis in children. Oh CW; Shetty GM; Song HR; Kyung HS; Oh JK; Min WK; Lee BW; Park BC J Pediatr Orthop B; 2008 Sep; 17(5):265-9. PubMed ID: 19471181 [TBL] [Abstract][Full Text] [Related]
37. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. Lill CA; Hesseln J; Schlegel U; Eckhardt C; Goldhahn J; Schneider E J Orthop Res; 2003 Sep; 21(5):836-42. PubMed ID: 12919871 [TBL] [Abstract][Full Text] [Related]
38. Primary study of the use of a shape-memory alloy distraction device in the dog mandible for alveolar ridge distraction: determination of osteotomy techniques and evaluation of osteogenesis outcome. Xie M; Xiao H; Hu M; Liu H; Li Y J Oral Maxillofac Surg; 2012 Dec; 70(12):2876-83. PubMed ID: 22632929 [TBL] [Abstract][Full Text] [Related]
39. Forces involved in lower limb lengthening: an in vivo biomechanical study. Lauterburg MT; Exner GU; Jacob HA J Orthop Res; 2006 Sep; 24(9):1815-22. PubMed ID: 16865711 [TBL] [Abstract][Full Text] [Related]
40. Segmental mandibular reconstruction by microincremental automatic distraction osteogenesis: an animal study. Ayoub AF; Richardson W; Koppel D; Thompson H; Lucas M; Schwarz T; Smith L; Boyd J Br J Oral Maxillofac Surg; 2001 Oct; 39(5):356-64. PubMed ID: 11601816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]