BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11194809)

  • 1. Analysis of hypertrophic and normal scar gene expression with cDNA microarrays.
    Tsou R; Cole JK; Nathens AB; Isik FF; Heimbach DM; Engrav LH; Gibran NS
    J Burn Care Rehabil; 2000; 21(6):541-50. PubMed ID: 11194809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression of early hypertrophic scar tissue screened by means of cDNA microarrays.
    Wu J; Ma B; Yi S; Wang Z; He W; Luo G; Chen X; Wang X; Chen A; Barisoni D
    J Trauma; 2004 Dec; 57(6):1276-86. PubMed ID: 15625461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of gene expression patterns in human postburn hypertrophic scars.
    Paddock HN; Schultz GS; Baker HV; Varela JC; Beierle EA; Moldawer LL; Mozingo DW
    J Burn Care Rehabil; 2003; 24(6):371-7. PubMed ID: 14610421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiles from hypertrophic scar fibroblasts before and after IL-6 stimulation.
    Dasu MR; Hawkins HK; Barrow RE; Xue H; Herndon DN
    J Pathol; 2004 Apr; 202(4):476-85. PubMed ID: 15095275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keloids are transcriptionally distinct from normal and hypertrophic scars.
    Walter AS; Stocks M; Akova E; Gauglitz G; Hartmann D; Aszodi A; Böcker W; Saller MM; Volkmer E
    Eur J Dermatol; 2023 Dec; 33(6):604-611. PubMed ID: 38465540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrantly expressed long noncoding RNAs in hypertrophic scar fibroblasts in vitro: A microarray study.
    Tu L; Huang Q; Fu S; Liu D
    Int J Mol Med; 2018 Apr; 41(4):1917-1930. PubMed ID: 29393369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Expression of matrix metalloproteinase-2, -9 and their inhibitor-1 in hypertrophic scars].
    Xie XF; He LX; Hao XF; Chen B; Jia CY; Sun ZG; Cao YJ; Li DH
    Zhonghua Shao Shang Za Zhi; 2007 Dec; 23(6):444-6. PubMed ID: 18457258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Expression of microRNA-296 in rabbit hypertrophic scars and its role to human fibroblasts].
    Guo BY; Lin F; Bai ZM; Tao K; Wang HY
    Zhonghua Shao Shang Za Zhi; 2021 Aug; 37(8):725-730. PubMed ID: 34404160
    [No Abstract]   [Full Text] [Related]  

  • 9. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.
    Chen G; Chen J; Zhuo S; Xiong S; Zeng H; Jiang X; Chen R; Xie S
    Br J Dermatol; 2009 Jul; 161(1):48-55. PubMed ID: 19309369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with different types of scars and keloids.
    Ulrich D; Ulrich F; Unglaub F; Piatkowski A; Pallua N
    J Plast Reconstr Aesthet Surg; 2010 Jun; 63(6):1015-21. PubMed ID: 19464975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic differences in cytokine responsiveness of hypertrophic scar versus normal dermal fibroblasts.
    Garner WL; Karmiol S; Rodriguez JL; Smith DJ; Phan SH
    J Invest Dermatol; 1993 Dec; 101(6):875-9. PubMed ID: 8245516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of wound contraction. Basic and clinical features.
    Nedelec B; Ghahary A; Scott PG; Tredget EE
    Hand Clin; 2000 May; 16(2):289-302. PubMed ID: 10791174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and hypertrophic scars: quantification and localization of messenger RNAs for type I, III and VI collagens.
    Zhang LQ; Laato M; Muona P; Kalimo H; Peltonen J
    Br J Dermatol; 1994 Apr; 130(4):453-9. PubMed ID: 8186109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of In Vitro Reconstructed Human Normotrophic, Hypertrophic, and Keloid Scar Models.
    Limandjaja GC; van den Broek LJ; Breetveld M; Waaijman T; Monstrey S; de Boer EM; Scheper RJ; Niessen FB; Gibbs S
    Tissue Eng Part C Methods; 2018 Apr; 24(4):242-253. PubMed ID: 29490604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphologic and Histologic Comparison of Hypertrophic Scar in Nude Mice, T-Cell Receptor, and Recombination Activating Gene Knockout Mice.
    Momtazi M; Ding J; Kwan P; Anderson CC; Honardoust D; Goekjian S; Tredget EE
    Plast Reconstr Surg; 2015 Dec; 136(6):1192-1204. PubMed ID: 26595016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of asiaticoside on the expression of transforming growth factor-beta mRNA and matrix metalloproteinases in hypertrophic scars].
    Zhang T; Rong XZ; Yang RH; Li TZ; Xu YB
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Jan; 26(1):67-70. PubMed ID: 16495179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Gene expression of extracellular-signal regulated protein kinase 5 and their MAPKK in fetal skin hypertrophic scars].
    Chen W; Fu XB; Ge SL; Zhou G; Jiang DY; Sun TZ; Sheng ZY
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2004 May; 20(3):222-4. PubMed ID: 15449628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophic and keloid scars fail to progress from the CD34
    Limandjaja GC; Belien JM; Scheper RJ; Niessen FB; Gibbs S
    Br J Dermatol; 2020 Apr; 182(4):974-986. PubMed ID: 31206605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of normal human skin gene expression using cDNA microarrays.
    Cole J; Tsou R; Wallace K; Gibran N; Isik F
    Wound Repair Regen; 2001; 9(2):77-85. PubMed ID: 11350645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of in vitro mechanical compression on Epilysin (matrix metalloproteinase-28) expression in hypertrophic scars.
    Renò F; Sabbatini M; Stella M; Magliacani G; Cannas M
    Wound Repair Regen; 2005; 13(3):255-61. PubMed ID: 15953044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.