BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11195094)

  • 1. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus.
    Jonas U; Hammer E; Haupt ET; Schauer F
    Arch Microbiol; 2000 Dec; 174(6):393-8. PubMed ID: 11195094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of 2-hydroxydibenzofuran by laccases of the white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products.
    Jonas U; Hammer E; Schauer F; Bollag JM
    Biodegradation; 1997-1998; 8(5):321-8. PubMed ID: 15765611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of dibenzo- p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white-rot fungus Phlebia lindtneri.
    Mori T; Kondo R
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):200-5. PubMed ID: 12382064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase.
    Schultz A; Jonas U; Hammer E; Schauer F
    Appl Environ Microbiol; 2001 Sep; 67(9):4377-81. PubMed ID: 11526052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752.
    Schauer F; Henning K; Pscheidl H; Wittich RM; Fortnagel P; Wilkes H; Sinnwell V; Francke W
    Biodegradation; 1995 Jun; 6(2):173-80. PubMed ID: 7772943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus.
    Temp U; Eggert C
    Appl Environ Microbiol; 1999 Feb; 65(2):389-95. PubMed ID: 9925558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor.
    Hiratsuka N; Wariishi H; Tanaka H
    Appl Microbiol Biotechnol; 2001 Nov; 57(4):563-71. PubMed ID: 11762605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Moody J; Cerniglia CE; Schauer F
    Arch Microbiol; 2000 Nov; 174(5):353-61. PubMed ID: 11131026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by (19)F nuclear magnetic resonance spectroscopy and (14)C radiolabelling analysis.
    Green NA; Meharg AA; Till C; Troke J; Nicholson JK
    Appl Environ Microbiol; 1999 Sep; 65(9):4021-7. PubMed ID: 10473411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus.
    Eggert C; Temp U; Eriksson KE
    FEBS Lett; 1997 Apr; 407(1):89-92. PubMed ID: 9141487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus.
    Eggert C; LaFayette PR; Temp U; Eriksson KE; Dean JF
    Appl Environ Microbiol; 1998 May; 64(5):1766-72. PubMed ID: 9572949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae.
    Lange J; Hammer E; Specht M; Francke W; Schauer F
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):364-8. PubMed ID: 9802222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a new laccase isoform from the white-rot fungi Pycnoporus cinnabarinus strain ss3.
    Otterbein L; Record E; Chereau D; Herpoël I; Asther M; Moukha SM
    Can J Microbiol; 2000 Aug; 46(8):759-63. PubMed ID: 10941525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Specht M; Cerniglia CE; Schauer F
    Appl Environ Microbiol; 2001 Sep; 67(9):4158-65. PubMed ID: 11526019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid.
    Eggert C; Temp U; Dean JF; Eriksson KE
    FEBS Lett; 1995 Dec; 376(3):202-6. PubMed ID: 7498542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenyl propenoic side chain degradation of ferulic acid by Pycnoporus cinnabarinus - elucidation of metabolic pathways using [5-2H]-ferulic acid.
    Krings U; Pilawa S; Theobald C; Berger RG
    J Biotechnol; 2001 Feb; 85(3):305-14. PubMed ID: 11173097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products.
    Gesell M; Hammer E; Specht M; Francke W; Schauer F
    Appl Environ Microbiol; 2001 Apr; 67(4):1551-7. PubMed ID: 11282604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivatization of bioactive carbazoles by the biphenyl-degrading bacterium Ralstonia sp. strain SBUG 290.
    Waldau D; Mikolasch A; Lalk M; Schauer F
    Appl Microbiol Biotechnol; 2009 May; 83(1):67-75. PubMed ID: 19148631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disposition and metabolic profiling of [14C]-decabromodiphenyl ether in pregnant Wistar rats.
    Riu A; Cravedi JP; Debrauwer L; Garcia A; Canlet C; Jouanin I; Zalko D
    Environ Int; 2008 Apr; 34(3):318-29. PubMed ID: 17481732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer.
    Lomascolo A; Record E; Herpoël-Gimbert I; Delattre M; Robert JL; Georis J; Dauvrin T; Sigoillot JC; Asther M
    J Appl Microbiol; 2003; 94(4):618-24. PubMed ID: 12631197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.