BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 11195356)

  • 1. Trans-tibial amputee gait: time-distance parameters and EMG activity.
    Isakov E; Keren O; Benjuya N
    Prosthet Orthot Int; 2000 Dec; 24(3):216-20. PubMed ID: 11195356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knee muscle activity during ambulation of trans-tibial amputees.
    Isakov E; Burger H; Krajnik J; Gregoric M; Marincek C
    J Rehabil Med; 2001 Sep; 33(5):196-9. PubMed ID: 11585149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.
    Blumentritt S; Schmalz T; Jarasch R; Schneider M
    Prosthet Orthot Int; 1999 Dec; 23(3):231-8. PubMed ID: 10890598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between socket pressure and EMG of two muscles in trans-femoral stumps during gait.
    Hong JH; Mun MS
    Prosthet Orthot Int; 2005 Apr; 29(1):59-72. PubMed ID: 16180378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface.
    Huang S; Ferris DP
    J Neuroeng Rehabil; 2012 Aug; 9():55. PubMed ID: 22882763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of speed on gait parameters and on symmetry in trans-tibial amputees.
    Isakov E; Burger H; Krajnik J; Gregoric M; Marincek C
    Prosthet Orthot Int; 1996 Dec; 20(3):153-8. PubMed ID: 8985994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of prosthetic foot alignment on trans-tibial amputee gait.
    Fridman A; Ona I; Isakov E
    Prosthet Orthot Int; 2003 Apr; 27(1):17-22. PubMed ID: 12812324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation].
    Blumentritt S; Schmalz T; Jarasch R
    Orthopade; 2001 Mar; 30(3):161-8. PubMed ID: 11501007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-limb support and step-length asymmetry in below-knee amputees.
    Isakov E; Burger H; Krajnik J; Gregoric M; Marincek C
    Scand J Rehabil Med; 1997 Jun; 29(2):75-9. PubMed ID: 9198256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis.
    Fey NP; Klute GK; Neptune RR
    J Biomech; 2013 Feb; 46(4):637-44. PubMed ID: 23312827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait patterns of elderly men with trans-tibial amputations.
    Lemaire ED; Fisher FR; Robertson DG
    Prosthet Orthot Int; 1993 Apr; 17(1):27-37. PubMed ID: 8337098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.
    Nakajima H; Yamamoto S; Katsuhira J
    Clin Biomech (Bristol, Avon); 2018 Jul; 56():84-89. PubMed ID: 29864596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of the prescription for trans-tibial (TT) amputees.
    Cortés A; Viosca E; Hoyos JV; Prat J; Sánchez-Lacuesta J
    Prosthet Orthot Int; 1997 Dec; 21(3):168-74. PubMed ID: 9453087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees.
    Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Below-knee amputee gait in stair ambulation. A comparison of stride characteristics using five different prosthetic feet.
    Torburn L; Schweiger GP; Perry J; Powers CM
    Clin Orthop Relat Res; 1994 Jun; (303):185-92. PubMed ID: 8194232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):728-34. PubMed ID: 24997811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.