These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 11195907)
1. Comparative studies on the in vitro properties of phytases from various microbial origins. Igbasan FA; Männer K; Miksch G; Borriss R; Farouk A; Simon O Arch Tierernahr; 2000; 53(4):353-73. PubMed ID: 11195907 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. Elkhalil EA; Männer K; Borriss R; Simon O Br Poult Sci; 2007 Feb; 48(1):64-70. PubMed ID: 17364542 [TBL] [Abstract][Full Text] [Related]
3. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Wyss M; Pasamontes L; Friedlein A; Rémy R; Tessier M; Kronenberger A; Middendorf A; Lehmann M; Schnoebelen L; Röthlisberger U; Kusznir E; Wahl G; Müller F; Lahm HW; Vogel K; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):359-66. PubMed ID: 9925554 [TBL] [Abstract][Full Text] [Related]
4. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Wyss M; Brugger R; Kronenberger A; Rémy R; Fimbel R; Oesterhelt G; Lehmann M; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):367-73. PubMed ID: 9925555 [TBL] [Abstract][Full Text] [Related]
5. PhyA gene product of Aspergillus ficuum and Peniophora lycii produces dissimilar phytases. Ullah AH; Sethumadhavan K Biochem Biophys Res Commun; 2003 Apr; 303(2):463-8. PubMed ID: 12659840 [TBL] [Abstract][Full Text] [Related]
6. Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna. Tan H; Tang J; Li X; Liu T; Miao R; Huang Z; Wang Y; Gan B; Peng W J Microbiol Biotechnol; 2017 Dec; 27(12):2180-2189. PubMed ID: 29017237 [TBL] [Abstract][Full Text] [Related]
7. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. Promdonkoy P; Tang K; Sornlake W; Harnpicharnchai P; Kobayashi RS; Ruanglek V; Upathanpreecha T; Vesaratchavest M; Eurwilaichitr L; Tanapongpipat S FEMS Microbiol Lett; 2009 Jan; 290(1):18-24. PubMed ID: 19025560 [TBL] [Abstract][Full Text] [Related]
8. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori. Martin JA; Murphy RA; Power RF Bioresour Technol; 2006 Sep; 97(14):1703-8. PubMed ID: 16243522 [TBL] [Abstract][Full Text] [Related]
9. [Purification and properties of Citrobacter freundii phytase]. Luo HY; Shi PJ; Li J; Wang YR; Yao B Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):139-42. PubMed ID: 16579482 [TBL] [Abstract][Full Text] [Related]
10. Susceptibility of wheat and Aspergillus niger phytases to inactivation by gastrointestinal enzymes. Phillippy BQ J Agric Food Chem; 1999 Apr; 47(4):1385-8. PubMed ID: 10563985 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Wyss M; Pasamontes L; Rémy R; Kohler J; Kusznir E; Gadient M; Müller F; van Loon APGM Appl Environ Microbiol; 1998 Nov; 64(11):4446-51. PubMed ID: 9797305 [TBL] [Abstract][Full Text] [Related]
12. High dietary phytase levels maximize phytate-phosphorus utilization but do not affect protein utilization in chicks fed phosphorus- or amino acid-deficient diets. Augspurger NR; Baker DH J Anim Sci; 2004 Apr; 82(4):1100-7. PubMed ID: 15080332 [TBL] [Abstract][Full Text] [Related]
13. Screening and Characterization of Phytases from Bacteria Isolated from Chilean Hydrothermal Environments. Jorquera MA; Gabler S; Inostroza NG; Acuña JJ; Campos MA; Menezes-Blackburn D; Greiner R Microb Ecol; 2018 Feb; 75(2):387-399. PubMed ID: 28861598 [TBL] [Abstract][Full Text] [Related]
14. Molecular and biochemical characteristics of recombinant β-propeller phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Kumar V; Sangwan P; Verma AK; Agrawal S Appl Biochem Biotechnol; 2014 May; 173(2):646-59. PubMed ID: 24687556 [TBL] [Abstract][Full Text] [Related]
15. Molecular advancements in the development of thermostable phytases. Rebello S; Jose L; Sindhu R; Aneesh EM Appl Microbiol Biotechnol; 2017 Apr; 101(7):2677-2689. PubMed ID: 28233043 [TBL] [Abstract][Full Text] [Related]
16. Performance of microbial phytases for gastric inositol phosphate degradation. Nielsen AV; Nyffenegger C; Meyer AS J Agric Food Chem; 2015 Jan; 63(3):943-50. PubMed ID: 25562369 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Tye AJ; Siu FK; Leung TY; Lim BL Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):190-7. PubMed ID: 12111145 [TBL] [Abstract][Full Text] [Related]
18. Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Viader-Salvadó JM; Gallegos-López JA; Carreón-Treviño JG; Castillo-Galván M; Rojo-Domínguez A; Guerrero-Olazarán M Appl Environ Microbiol; 2010 Oct; 76(19):6423-30. PubMed ID: 20693453 [TBL] [Abstract][Full Text] [Related]
19. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. Boyce A; Walsh G J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(5):789-98. PubMed ID: 16702059 [TBL] [Abstract][Full Text] [Related]
20. Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein. Mingmongkolchai S; Panbangred W Appl Biochem Biotechnol; 2019 Mar; 187(3):838-855. PubMed ID: 30088242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]