BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11195968)

  • 1. Construction of a ferritin reactor: an efficient means for trapping various heavy metal ions in flowing seawater.
    Huang HQ; Lin QM; Lou ZB
    J Protein Chem; 2000 Aug; 19(6):441-7. PubMed ID: 11195968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH and phosphate on trapping capacity of various heavy metal ions with ferritin reactor in flowing seawater.
    Kong B; Huang HQ; Lin QM; Cai ZW; Chen P
    Appl Biochem Biotechnol; 2005 Aug; 126(2):133-48. PubMed ID: 16118467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of trapping copper ions with scrolled ferritin reactor in the flowing seawater.
    Huang HQ; Cao TM; Lin QM
    Environ Sci Technol; 2004 Apr; 38(8):2476-81. PubMed ID: 15116856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of trapping various organophosphorus pesticides with a ferritin reactor of shark liver (Sphyrna zygaena).
    Huang HQ; Xiao ZQ; Lin QM; Chen P
    Anal Chem; 2005 Mar; 77(6):1920-7. PubMed ID: 15762606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion binding to apo, holo, and reconstituted horse spleen ferritin.
    Pead S; Durrant E; Webb B; Larsen C; Heaton D; Johnson J; Watt GD
    J Inorg Biochem; 1995 Jul; 59(1):15-27. PubMed ID: 7782791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferritin-catalyzed consumption of hydrogen peroxide by amine buffers causes the variable Fe2+ to O2 stoichiometry of iron deposition in horse spleen ferritin.
    Zhang B; Wilson PE; Watt GD
    J Biol Inorg Chem; 2006 Nov; 11(8):1075-86. PubMed ID: 16896807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forming the phosphate layer in reconstituted horse spleen ferritin and the role of phosphate in promoting core surface redox reactions.
    Johnson JL; Cannon M; Watt RK; Frankel RB; Watt GD
    Biochemistry; 1999 May; 38(20):6706-13. PubMed ID: 10350490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin.
    Wang Y; Zang J; Wang C; Zhang X; Zhao G
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and structural and functional investigation of a novel ferritin from Phascolosoma esculenta.
    Ding H; Zhang D; Chu S; Zhou J; Su X
    Protein Sci; 2017 Oct; 26(10):2039-2050. PubMed ID: 28726294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role for the conserved trimer interface of ferritin in iron incorporation.
    Yablonski MJ; Theil EC
    Biochemistry; 1992 Oct; 31(40):9680-4. PubMed ID: 1390744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate of iron transfer through the horse spleen ferritin shell determined by the rate of formation of Prussian Blue and Fe-desferrioxamine within the ferritin cavity.
    Zhang B; Watt RK; Gálvez N; Domínguez-Vera JM; Watt GD
    Biophys Chem; 2006 Mar; 120(2):96-105. PubMed ID: 16314026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of ferritin hydrogels utilizing subunit-subunit interactions.
    Yamanaka M; Mashima T; Ogihara M; Okamoto M; Uchihashi T; Hirota S
    PLoS One; 2021; 16(11):e0259052. PubMed ID: 34731167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization.
    Pereira AS; Small W; Krebs C; Tavares P; Edmondson DE; Theil EC; Huynh BH
    Biochemistry; 1998 Jul; 37(28):9871-6. PubMed ID: 9665690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe2+ binding to apo and holo mammalian ferritin.
    Jacobs D; Watt GD; Frankel RB; Papaefthymiou GC
    Biochemistry; 1989 Nov; 28(23):9216-21. PubMed ID: 2557919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron core formation in horse spleen ferritin: magnetic susceptibility, pH, and compositional studies.
    Hilty S; Webb B; Frankel RB; Watt GD
    J Inorg Biochem; 1994 Nov; 56(3):173-85. PubMed ID: 7798900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the effects on metal binding of the systematic substitution of five key glutamate ligands in the ferritin of Escherichia coli.
    Stillman TJ; Connolly PP; Latimer CL; Morland AF; Quail MA; Andrews SC; Treffry A; Guest JR; Artymiuk PJ; Harrison PM
    J Biol Chem; 2003 Jul; 278(28):26275-86. PubMed ID: 12730190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative Differential Resistance Behavior of the Iron Storage Protein Ferritin.
    Kolay J; Bera S; Rakshit T; Mukhopadhyay R
    Langmuir; 2018 Mar; 34(9):3126-3135. PubMed ID: 29412680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying.
    Guo SH; Liu ZL; Li QS; Yang P; Wang LL; He BY; Xu ZM; Ye JS; Zeng EY
    Chemosphere; 2016 Aug; 157():262-70. PubMed ID: 27236846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of iron in a ferrous form by ferritin. A study using dispersive and conventional x-ray absorption spectroscopy.
    Rohrer JS; Joo MS; Dartyge E; Sayers DE; Fontaine A; Theil EC
    J Biol Chem; 1987 Oct; 262(28):13385-7. PubMed ID: 3654617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.