These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11196837)

  • 21. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission.
    Li J; Davis I; Griffith WP; Liu A
    J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA.
    Chaplin AK; Bernini C; Sinicropi A; Basosi R; Worrall JAR; Svistunenko DA
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6502-6506. PubMed ID: 28464409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical and spectroscopic effects of mixed substituents in bis(phenolate)-copper(II) galactose oxidase model complexes.
    Pratt RC; Lyons CT; Wasinger EC; Stack TD
    J Am Chem Soc; 2012 May; 134(17):7367-77. PubMed ID: 22471355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray structures of copper(II) and nickel(II) radical salen complexes: the preference of galactose oxidase for copper(II).
    Orio M; Jarjayes O; Kanso H; Philouze C; Neese F; Thomas F
    Angew Chem Int Ed Engl; 2010 Jul; 49(29):4989-92. PubMed ID: 20419723
    [No Abstract]   [Full Text] [Related]  

  • 25. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The crystal and molecular structures of three copper-containing complexes and their activities in mimicking galactose oxidase.
    Dimeska R; Wikaira J; Mockler GM; Butcher RJ
    Acta Crystallogr C Struct Chem; 2019 May; 75(Pt 5):538-544. PubMed ID: 31062710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co(II), Ni(II), Cu(II) and Zn(II) complexes of a bipyridine bis-phenol conjugate: generation and properties of coordinated radical species.
    Arora H; Philouze C; Jarjayes O; Thomas F
    Dalton Trans; 2010 Nov; 39(42):10088-98. PubMed ID: 20820605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of the copper site in galactose oxidase using X-ray absorption spectroscopy.
    Clark K; Penner-Hahn JE; Whittaker M; Whittaker JW
    Biochemistry; 1994 Oct; 33(42):12553-7. PubMed ID: 7918479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted oxidase reactivity with a new redox-active ligand incorporating N2O2 donor atoms. Complexes of Cu(II), Ni(II), Pd(II), Fe(III), and V(V).
    Mukherjee C; Weyhermüller T; Bothe E; Chaudhuri P
    Inorg Chem; 2008 Dec; 47(24):11620-32. PubMed ID: 18998669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins.
    Gamez P; Koval IA; Reedijk J
    Dalton Trans; 2004 Dec; (24):4079-88. PubMed ID: 15573156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen.
    Rogers MS; Hurtado-Guerrero R; Firbank SJ; Halcrow MA; Dooley DM; Phillips SE; Knowles PF; McPherson MJ
    Biochemistry; 2008 Sep; 47(39):10428-39. PubMed ID: 18771294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the phenoxyl radical in model complexes for the Cu(B) site of cytochrome c oxidase: steady-state and transient absorption measurements, UV resonance raman spectroscopy, EPR spectroscopy, and DFT calculations for M-BIAIP.
    Nagano Y; Liu JG; Naruta Y; Ikoma T; Tero-Kubota S; Kitagawa T
    J Am Chem Soc; 2006 Nov; 128(45):14560-70. PubMed ID: 17090040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of Benzyl Alcohol with Cu(II) and Zn(II) Complexes of the Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase.
    Itoh S; Taki M; Takayama S; Nagatomo S; Kitagawa T; Sakurada N; Arakawa R; Fukuzumi S
    Angew Chem Int Ed Engl; 1999 Sep; 38(18):2774-2776. PubMed ID: 10508379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The phenoxy/phenol/copper cation: a minimalistic model of bonding relations in active centers of mononuclear copper enzymes.
    Milko P; Roithová J; Schröder D; Lemaire J; Schwarz H; Holthausen MC
    Chemistry; 2008; 14(14):4318-27. PubMed ID: 18381738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structural and functional model of galactose oxidase: control of the one-electron oxidized active form through two differentiated phenolic arms in a tripodal ligand.
    Thomas F; Gellon G; Gautier-Luneau I; Saint-Aman E; Pierre JL
    Angew Chem Int Ed Engl; 2002 Aug; 41(16):3047-50. PubMed ID: 12203454
    [No Abstract]   [Full Text] [Related]  

  • 37. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase.
    Ito N; Phillips SE; Stevens C; Ogel ZB; McPherson MJ; Keen JN; Yadav KD; Knowles PF
    Nature; 1991 Mar; 350(6313):87-90. PubMed ID: 2002850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O
    Cowley RE; Cirera J; Qayyum MF; Rokhsana D; Hedman B; Hodgson KO; Dooley DM; Solomon EI
    J Am Chem Soc; 2016 Oct; 138(40):13219-13229. PubMed ID: 27626829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper(I)-phenolate complexes as models of the reduced active site of galactose oxidase: synthesis, characterization, and O2 reactivity.
    Jazdzewski BA; Reynolds AM; Holland PL; Young VG; Kaderli S; Zuberbühler AD; Tolman WB
    J Biol Inorg Chem; 2003 Apr; 8(4):381-93. PubMed ID: 12761659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.