BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11196900)

  • 1. Supramolecular complex of cytochrome c with lariat ether: solubilization, redox behavior and catalytic activity of cytochrome c in methanol.
    Yamada T; Shinoda S; Kikawa K; Ichimura A; Teraoka J; Takui T; Tsukube H
    Inorg Chem; 2000 Jul; 39(14):3049-56. PubMed ID: 11196900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c-crown ether complexes as supramolecular catalysts: cold-active synzymes for asymmetric sulfoxide oxidation in methanol.
    Suzumura A; Paul D; Sugimoto H; Shinoda S; Julian RR; Beauchamp JL; Teraoka J; Tsukube H
    Inorg Chem; 2005 Feb; 44(4):904-10. PubMed ID: 15859267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical activation of cytochrome c proteins via crown ether complexation: cold-active synzymes for enantiomer-selective sulfoxide oxidation in methanol.
    Paul D; Suzumura A; Sugimoto H; Teraoka J; Shinoda S; Tsukube H
    J Am Chem Soc; 2003 Sep; 125(38):11478-9. PubMed ID: 13129333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquids via crown ether complexation.
    Shimojo K; Kamiya N; Tani F; Naganawa H; Naruta Y; Goto M
    Anal Chem; 2006 Nov; 78(22):7735-42. PubMed ID: 17105166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of water-miscible organic solvents on the catalytic activity of cytochrome c.
    Vazquez-Duhalt R; Semple KM; Westlake DW; Fedorak PM
    Enzyme Microb Technol; 1993 Nov; 15(11):936-43. PubMed ID: 7764253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilisation of ferricytochrome c in methanol using a crown ether: absorption, circular dichroism and EPR spectral properties.
    Bowyer JR; Odell B
    Biochem Biophys Res Commun; 1985 Mar; 127(3):828-35. PubMed ID: 2985061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkali metal cation-pi interactions observed by using a lariat ether model system.
    Meadows ES; De Wall SL; Barbour LJ; Gokel GW
    J Am Chem Soc; 2001 Apr; 123(13):3092-107. PubMed ID: 11457020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity.
    Bardischewsky F; Quentmeier A; Rother D; Hellwig P; Kostka S; Friedrich CG
    Biochemistry; 2005 May; 44(18):7024-34. PubMed ID: 15865447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex formation of cytochrome C with a calixarene carboxylic acid derivative: a novel solubilization method for biomolecules in organic media.
    Oshima T; Goto M; Furusaki S
    Biomacromolecules; 2002; 3(3):438-44. PubMed ID: 12005512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination and redox properties of a novel triheme cytochrome from Desulfovibrio vulgaris (Hildenborough).
    Tan JA; Cowan JA
    Biochemistry; 1990 May; 29(20):4886-92. PubMed ID: 2163671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Proton-Ionizable Lariat Ethers with Picrylamino-Type Side Arms and Their Alkali Metal Salts. Synthesis and Structural Studies(1).
    Bartsch RA; Hwang HS; Talanov VS; Talanova GG; Purkiss DW; Rogers RD
    J Org Chem; 1999 Jul; 64(15):5341-5349. PubMed ID: 11674591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unusually high proton affinity of aza-18-crown-6 ether: implications for the molecular recognition of lysine in peptides by lariat crown ethers.
    Julian RR; Beauchamp JL
    J Am Soc Mass Spectrom; 2002 May; 13(5):493-8. PubMed ID: 12019973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iptycene-derived crown ether hosts for molecular recognition and self-assembly.
    Han Y; Meng Z; Ma YX; Chen CF
    Acc Chem Res; 2014 Jul; 47(7):2026-40. PubMed ID: 24877894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of structural variation within lipophilic N-(X)sulfonyl carbamoyl lariat ethers on the selectivity and efficiency of competitive alkali metal cation extraction into chloroform.
    Lee EK; Cho BR; Hu H; Bartsch RA
    Anal Chem; 2002 May; 74(9):2177-83. PubMed ID: 12033324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding and electron transfer reactions between methanol dehydrogenase and its physiologic electron acceptor cytochrome c-551i: a kinetic and thermodynamic analysis.
    Harris TK; Davidson VL
    Biochemistry; 1993 Dec; 32(51):14145-50. PubMed ID: 8260498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests.
    Zhang M; Yan X; Huang F; Niu Z; Gibson HW
    Acc Chem Res; 2014 Jul; 47(7):1995-2005. PubMed ID: 24804805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, complexation, and fluorescence behavior of armed crown ethers carrying naphthyl group.
    Kubo K; Sakaguchi S; Sakurai T
    Talanta; 1999 Jul; 49(4):735-44. PubMed ID: 18967649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium cation complexation by lariat ether receptors having arene-terminated sidearms.
    Hu J; Barbour LJ; Ferdani R; Gokel GW
    Chem Commun (Camb); 2002 Sep; (17):1806-7. PubMed ID: 12271618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.