These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 11197477)
1. Using direct electrochemistry to probe rate limiting events during nitrate reductase turnover. Anderson LJ; Richardson DJ; Butt JN Faraday Discuss; 2000; (116):155-69; discussion 171-90. PubMed ID: 11197477 [TBL] [Abstract][Full Text] [Related]
2. Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Anderson LJ; Richardson DJ; Butt JN Biochemistry; 2001 Sep; 40(38):11294-307. PubMed ID: 11560477 [TBL] [Abstract][Full Text] [Related]
3. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473 [TBL] [Abstract][Full Text] [Related]
4. In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. Frangioni B; Arnoux P; Sabaty M; Pignol D; Bertrand P; Guigliarelli B; Léger C J Am Chem Soc; 2004 Feb; 126(5):1328-9. PubMed ID: 14759176 [TBL] [Abstract][Full Text] [Related]
5. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family. Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273 [TBL] [Abstract][Full Text] [Related]
6. Reductive activation of nitrate reductases. Field SJ; Thornton NP; Anderson LJ; Gates AJ; Reilly A; Jepson BJ; Richardson DJ; George SJ; Cheesman MR; Butt JN Dalton Trans; 2005 Nov; (21):3580-6. PubMed ID: 16234941 [TBL] [Abstract][Full Text] [Related]
7. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Butler CS; Charnock JM; Garner CD; Thomson AJ; Ferguson SJ; Berks BC; Richardson DJ Biochem J; 2000 Dec; 352 Pt 3(Pt 3):859-64. PubMed ID: 11104696 [TBL] [Abstract][Full Text] [Related]
8. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Elliott SJ; Hoke KR; Heffron K; Palak M; Rothery RA; Weiner JH; Armstrong FA Biochemistry; 2004 Jan; 43(3):799-807. PubMed ID: 14730985 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical and kinetic analysis of electron-transfer reactions of Chlorella nitrate reductase. Kay CJ; Solomonson LP; Barber MJ Biochemistry; 1991 Dec; 30(48):11445-50. PubMed ID: 1742283 [TBL] [Abstract][Full Text] [Related]
10. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Butler CS; Fairhurst SA; Ferguson SJ; Thomson AJ; Berks BC; Richardson DJ; Lowe DJ Biochem J; 2002 May; 363(Pt 3):817-23. PubMed ID: 11964184 [TBL] [Abstract][Full Text] [Related]
11. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Gates AJ; Richardson DJ; Butt JN Biochem J; 2008 Jan; 409(1):159-68. PubMed ID: 17900239 [TBL] [Abstract][Full Text] [Related]
12. Enzyme-catalysed nitrate reduction-themes and variations as revealed by protein film voltammetry. Butt JN; Anderson LJ; Rubio LM; Richardson DJ; Flores E; Herrero A Bioelectrochemistry; 2002 May; 56(1-2):17-8. PubMed ID: 12009435 [TBL] [Abstract][Full Text] [Related]
13. Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. Butler CS; Ferguson SJ; Berks BC; Thomson AJ; Cheesman MR; Richardson DJ FEBS Lett; 2001 Jun; 500(1-2):71-4. PubMed ID: 11434929 [TBL] [Abstract][Full Text] [Related]
14. Structure and function of eukaryotic NAD(P)H:nitrate reductase. Campbell WH Cell Mol Life Sci; 2001 Feb; 58(2):194-204. PubMed ID: 11289301 [TBL] [Abstract][Full Text] [Related]
15. Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Jormakka M; Richardson D; Byrne B; Iwata S Structure; 2004 Jan; 12(1):95-104. PubMed ID: 14725769 [TBL] [Abstract][Full Text] [Related]
16. Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. Bennett B; Berks BC; Ferguson SJ; Thomson AJ; Richardson DJ Eur J Biochem; 1994 Dec; 226(3):789-98. PubMed ID: 7813468 [TBL] [Abstract][Full Text] [Related]
17. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa. Kalimuthu P; Ringel P; Kruse T; Bernhardt PV Biochim Biophys Acta; 2016 Sep; 1857(9):1506-1513. PubMed ID: 27060250 [TBL] [Abstract][Full Text] [Related]
18. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD; Kappler U; Hanson GR; Bernhardt PV Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809 [TBL] [Abstract][Full Text] [Related]