BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11197497)

  • 1. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly L-lactic acid membrane.
    Suh H; Hwang YS; Lee JE; Han CD; Park JC
    Biomaterials; 2001 Feb; 22(3):219-30. PubMed ID: 11197497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type I atelocollagen grafting onto ozone-treated polyurethane films: cell attachment, proliferation, and collagen synthesis.
    Park JC; Hwang YS; Lee JE; Park KD; Matsumura K; Hyon SH; Suh H
    J Biomed Mater Res; 2000 Dec; 52(4):669-77. PubMed ID: 11033549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of peptides by ozone activation to promote the osteoconductivity of PLLA substrates.
    Lee JJ; Ho MH; Hsiao SW
    J Biomater Sci Polym Ed; 2008; 19(12):1637-48. PubMed ID: 19017476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient modification on PLLA by ozone treatment for biomedical applications.
    Ho MH; Lee JJ; Fan SC; Wang DM; Hou LT; Hsieh HJ; Lai JY
    Macromol Biosci; 2007 Apr; 7(4):467-74. PubMed ID: 17429808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced attachment of human osteoblasts on NH3-treated poly(L-lactic acid) membranes for guided bone regeneration.
    Byeon JH; Kim SG; Son JS; Jin SC; Piao ZG; Lee SY; Jang ES; Kim JS; Jeong MA; Ahn H; Park JP
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1691-5. PubMed ID: 23755575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility.
    Liu Z; Jiao Y; Zhang Z; Zhou C
    J Biomed Mater Res A; 2007 Dec; 83(4):1110-1116. PubMed ID: 17584905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro behavior of osteoblast-like cells on PLLA films with a biomimetic apatite or apatite/collagen composite coating.
    Chen Y; Mak AF; Wang M; Li JS; Wong MS
    J Mater Sci Mater Med; 2008 Jun; 19(6):2261-8. PubMed ID: 18058196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of poly-L-lactic acid (PLLA) membrane by grafting acrylamide: an effective way to improve cytocompatibility for chondrocytes.
    Ma Z; Gao C; Shen J
    J Biomater Sci Polym Ed; 2003; 14(1):13-25. PubMed ID: 12635768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor.
    Ma Z; Gao C; Gong Y; Shen J
    Biomaterials; 2005 Apr; 26(11):1253-9. PubMed ID: 15475055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].
    Fang W; Zeng SG; Gao WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Apr; 35(4):567-72. PubMed ID: 25907946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Yang F; Gubler MJ; Ramakrishna S; Chan CK
    Tissue Eng Part A; 2009 Mar; 15(3):535-46. PubMed ID: 18759670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering.
    Chen JP; Su CH
    Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterofunctional nanosheet controlling cell adhesion properties by collagen coating.
    Niwa D; Fujie T; Lang T; Goda N; Takeoka S
    J Biomater Appl; 2012 Aug; 27(2):131-41. PubMed ID: 21343215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production.
    Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK
    Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Block copolymer of polyphosphoester and poly(L-lactic acid) modified surface for enhancing osteoblast adhesion, proliferation, and function.
    Yang XZ; Sun TM; Dou S; Wu J; Wang YC; Wang J
    Biomacromolecules; 2009 Aug; 10(8):2213-20. PubMed ID: 19586040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-osteoblasts on poly(L-lactic acid) and silicon oxide: Influence of fibronectin and albumin adsorption.
    Hindié M; Degat MC; Gaudière F; Gallet O; Van Tassel PR; Pauthe E
    Acta Biomater; 2011 Jan; 7(1):387-94. PubMed ID: 20692384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous collagen scaffold reinforced with surfaced activated PLLA nanoparticles.
    Xu C; Lu W; Bian S; Liang J; Fan Y; Zhang X
    ScientificWorldJournal; 2012; 2012():695137. PubMed ID: 22448137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of MG-63 cells on collagen, poly-L-lactic acid, hydroxyapatite scaffolds with different parameters.
    Cecen B; Kozaci D; Yuksel M; Erdemli D; Bagriyanik A; Havitcioglu H
    J Appl Biomater Funct Mater; 2015 Mar; 13(1):10-6. PubMed ID: 24744232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.