BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 11198165)

  • 1. The role of phytic acid in legumes: antinutrient or beneficial function?
    Urbano G; López-Jurado M; Aranda P; Vidal-Valverde C; Tenorio E; Porres J
    J Physiol Biochem; 2000 Sep; 56(3):283-94. PubMed ID: 11198165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reevaluation of Phytase Action Mechanism in Animal Nutrition.
    Kryukov VS; Glebova IV; Zinoviev SV
    Biochemistry (Mosc); 2021 Jan; 86(Suppl 1):S152-S165. PubMed ID: 33827406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytates in legumes and cereals.
    Reddy NR; Sathe SK; Salunkhe DK
    Adv Food Res; 1982; 28():1-92. PubMed ID: 6299067
    [No Abstract]   [Full Text] [Related]  

  • 4. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis.
    Schlemmer U; Frølich W; Prieto RM; Grases F
    Mol Nutr Food Res; 2009 Sep; 53 Suppl 2():S330-75. PubMed ID: 19774556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytate in pig and poultry nutrition.
    Humer E; Schwarz C; Schedle K
    J Anim Physiol Anim Nutr (Berl); 2015 Aug; 99(4):605-25. PubMed ID: 25405653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key Aspects of Myo-Inositol Hexaphosphate (Phytate) and Pathological Calcifications.
    Grases F; Costa-Bauza A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The degradation of phytic acid in legumes prepared by different methods.
    Schlemmer U; Müller H; Jany KD
    Eur J Clin Nutr; 1995 Oct; 49 Suppl 3():S207-10. PubMed ID: 8549525
    [No Abstract]   [Full Text] [Related]  

  • 8. Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds.
    Greiner R; Larsson Alminger M; Carlsson NG; Muzquiz M; Burbano C; Cuadrado C; Pedrosa MM; Goyoaga C
    J Agric Food Chem; 2002 Nov; 50(23):6865-70. PubMed ID: 12405789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis.
    Amritha GK; Venkateswaran G
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability of minerals in legumes.
    Sandberg AS
    Br J Nutr; 2002 Dec; 88 Suppl 3():S281-5. PubMed ID: 12498628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats.
    Lönnerdal B; Sandberg AS; Sandström B; Kunz C
    J Nutr; 1989 Feb; 119(2):211-4. PubMed ID: 2918393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of phytates in human nutrition].
    Shikh EV; Makhova AA; Dorogun OB; Elizarova EV
    Vopr Pitan; 2023; 92(4):20-28. PubMed ID: 37801451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants.
    Singh B; Satyanarayana T
    J Anim Physiol Anim Nutr (Berl); 2015 Aug; 99(4):646-60. PubMed ID: 25132310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved.
    Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G
    Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytic acid interactions in food systems.
    Cheryan M
    Crit Rev Food Sci Nutr; 1980; 13(4):297-335. PubMed ID: 7002470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of several germination treatments on phosphatases activities and degradation of phytate in faba bean (Vicia faba L.) and azuki bean (Vigna angularis L.).
    Luo Y; Xie W; Luo F
    J Food Sci; 2012 Oct; 77(10):C1023-9. PubMed ID: 22938099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.
    Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC
    J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase.
    Bohn L; Josefsen L; Meyer AS; Rasmussen SK
    J Agric Food Chem; 2007 Sep; 55(18):7547-52. PubMed ID: 17696444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.