These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 11198165)

  • 21. Production of fungal phytases in solid state fermentation and potential biotechnological applications.
    Singh B; Pragya ; Tiwari SK; Singh D; Kumar S; Malik V
    World J Microbiol Biotechnol; 2023 Nov; 40(1):22. PubMed ID: 38008864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241).
    Pilu R; Panzeri D; Gavazzi G; Rasmussen SK; Consonni G; Nielsen E
    Theor Appl Genet; 2003 Oct; 107(6):980-7. PubMed ID: 14523526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet.
    Silva VM; Putti FF; White PJ; Reis ARD
    Plant Physiol Biochem; 2021 Jul; 164():132-146. PubMed ID: 33991859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of phytate on in vitro digestibility of casein under physiological conditions.
    Lathia D; Hoch G; Kievernagel Y
    Plant Foods Hum Nutr; 1987; 37(3):229-35. PubMed ID: 3507680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods.
    Chitra U; Singh U; Rao PV
    Plant Foods Hum Nutr; 1996 Jun; 49(4):307-16. PubMed ID: 8983057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low zinc, iron, and calcium intakes of Northeast Thai school children consuming glutinous rice-based diets are not exacerbated by high phytate.
    Krittaphol W; Bailey KB; Pongcharoen T; Winichagoon P; Gibson RS
    Int J Food Sci Nutr; 2006; 57(7-8):520-8. PubMed ID: 17162330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutritional significance of phytic acid and phytase.
    Pallauf J; Rimbach G
    Arch Tierernahr; 1997; 50(4):301-19. PubMed ID: 9345595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants.
    Davidsson L; Ziegler EE; Kastenmayer P; van Dael P; Barclay D
    Br J Nutr; 2004 Feb; 91(2):287-94. PubMed ID: 14756915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen.
    Barrientos L; Scott JJ; Murthy PP
    Plant Physiol; 1994 Dec; 106(4):1489-95. PubMed ID: 7846160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Essential minerals and phytic acid in legumes with reference to their nutritive and medicinal properties.
    Ahmed S; Zafar Mahmood SB; Hasan MM; Mahmood ZA
    Pak J Pharm Sci; 2017 Sep; 30(5):1733-1742. PubMed ID: 29084696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of phytate on mineral bioavailability in mice.
    Graf E; Eaton JW
    J Nutr; 1984 Jul; 114(7):1192-8. PubMed ID: 6737084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of vegetable protein sources on trace element and mineral bioavailability.
    Hurrell RF
    J Nutr; 2003 Sep; 133(9):2973S-7S. PubMed ID: 12949395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes.
    Zhang YY; Stockmann R; Ng K; Ajlouni S
    Crit Rev Food Sci Nutr; 2022; 62(6):1696-1712. PubMed ID: 33190514
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of domestic processing on the cooking time, nutrients, antinutrients and in vitro protein digestibility of the African yambean (Sphenostylis stenocarpa).
    Ene-obong HN; Obizoba IC
    Plant Foods Hum Nutr; 1996 Jan; 49(1):43-52. PubMed ID: 9139303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-phytate interactions in pig and poultry nutrition: a reappraisal.
    Selle PH; Cowieson AJ; Cowieson NP; Ravindran V
    Nutr Res Rev; 2012 Jun; 25(1):1-17. PubMed ID: 22309781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Phytic acid and cereals and cereal products. I: Phytic acid and phytase in rye and rye products].
    Fretzdorff B; Weipert D
    Z Lebensm Unters Forsch; 1986 Apr; 182(4):287-93. PubMed ID: 3012903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics.
    Humer E; Schedle K
    J Trace Elem Med Biol; 2016 Sep; 37():69-77. PubMed ID: 27012174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Nutritional changes caused by the germination of legumes commonly eaten in Chile].
    Camacho L; Sierra C; Campos R; Guzmán E; Marcus D
    Arch Latinoam Nutr; 1992 Sep; 42(3):283-90. PubMed ID: 1342162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.