These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11199309)

  • 1. The LPD-II: a modified locked percutaneous device that permits safe subcutaneous access.
    Yu C; Harris GD
    ASAIO J; 2001; 47(1):25-9. PubMed ID: 11199309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel percutaneous barrier device that permits safe subcutaneous access.
    Yu C; Sun Y; Bradfield J; Fiordalisi I; Harris GD
    ASAIO J; 1999; 45(6):531-4. PubMed ID: 10593682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative design of locked percutaneous device for skeletal extension through skin.
    Yu C; Harris GD; Sun Y
    Artif Organs; 2003 Mar; 27(3):267-71. PubMed ID: 12662214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of a novel tissue connector for fixation of tracheostoma valves and shunt valves.
    Geertsema AA; Schutte HK; van Leeuwen MB; Rakhorst G; Schakenraad JM; van Luyn MJ; Verkerke GJ
    Biomaterials; 1999 Nov; 20(21):1997-2005. PubMed ID: 10535811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue reaction to soft-tissue anchored percutaneous implants in rabbits.
    Jansen JA; Paquay YG; van der Waerden JP
    J Biomed Mater Res; 1994 Sep; 28(9):1047-54. PubMed ID: 7814432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one stage versus two stage surgical technique. Tissue reaction to a percutaneous device provided with titanium fiber mesh applicable for peritoneal dialysis.
    Paquay YC; De Ruijter AE; van der Waerden JP; Jansen JA
    ASAIO J; 1996; 42(6):961-7. PubMed ID: 8959270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium fiber mesh anchorage for percutaneous devices applicable for peritoneal dialysis.
    Paquay YC; de Ruijter JE; van der Waerden JP; Jansen JA
    J Biomed Mater Res; 1994 Nov; 28(11):1321-8. PubMed ID: 7829562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a new percutaneous access device for implantation in soft tissues.
    Jansen JA; van der Waerden JP; de Groot K
    J Biomed Mater Res; 1991 Dec; 25(12):1535-45. PubMed ID: 1794999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-oral soft tissue expansion and volume stability of onlay bone grafts.
    Abrahamsson P
    Swed Dent J Suppl; 2011; (211):11-66. PubMed ID: 21717895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wound healing phenomena in titanium fibre mesh: the influence of the length of implantation.
    Paquay YC; de Ruijter JE; van der Waerden JP; Jansen JA
    Biomaterials; 1997 Jan; 18(2):161-6. PubMed ID: 9022964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of porosity on endothelialization of ePTFE implanted in subcutaneous and adipose tissue.
    Salzmann DL; Kleinert LB; Berman SS; Williams SK
    J Biomed Mater Res; 1997 Mar; 34(4):463-76. PubMed ID: 9054530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wound healing around bone-anchored percutaneous devices in experimental diabetes mellitus.
    Gerritsen M; Lutterman JA; Jansen JA
    J Biomed Mater Res; 2000; 53(6):702-9. PubMed ID: 11074430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue response to percutaneous implants in rabbits.
    Jansen JA; van der Waerden JP; van der Lubbe HB; de Groot K
    J Biomed Mater Res; 1990 Mar; 24(3):295-307. PubMed ID: 2318897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative pressure wound therapy limits downgrowth in percutaneous devices.
    Mitchell SJ; Jeyapalina S; Nichols FR; Agarwal J; Bachus KN
    Wound Repair Regen; 2016; 24(1):35-44. PubMed ID: 26487170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential healing and neovascularization of ePTFE implants in subcutaneous versus adipose tissue.
    Williams SK; Berman SS; Kleinert LB
    J Biomed Mater Res; 1997 Jun; 35(4):473-81. PubMed ID: 9189825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of wound response and soft tissue ingrowth in synthetic and allogeneic implants with platelet concentrate.
    Sclafani AP; Romo T; Ukrainsky G; McCormick SA; Litner J; Kevy SV; Jacobson MS
    Arch Facial Plast Surg; 2005; 7(3):163-9. PubMed ID: 15897404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-related differences in percutaneous wound healing.
    Gangjee T; Colaizzo R; von Recum AF
    Ann Biomed Eng; 1985; 13(5):451-67. PubMed ID: 4073629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of rabbit adipose-derived mesenchymal stem cells on the healing of skin deep partial-thickness scald wound of rabbit].
    Yao YM; Yan H; Zhang ZM; Wu CF; Zhang L; Yang BB
    Zhonghua Shao Shang Za Zhi; 2016 Jul; 32(7):402-7. PubMed ID: 27464630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of impaired wound healing on the tissue reaction to percutaneous devices using titanium fiber mesh anchorage.
    Gerritsen M; Lutterman JA; Jansen JA
    J Biomed Mater Res; 2000 Oct; 52(1):135-41. PubMed ID: 10906684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcutaneous microfabricated surfaces inhibit epithelial recession and promote long-term survival of percutaneous implants.
    Chehroudi B; Brunette DM
    Biomaterials; 2002 Jan; 23(1):229-37. PubMed ID: 11762842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.