These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 11200071)
1. Severe exercise enhances phagocytosis by murine bronchoalveolar macrophages. Su SH; Chen HI; Jen CJ J Leukoc Biol; 2001 Jan; 69(1):75-80. PubMed ID: 11200071 [TBL] [Abstract][Full Text] [Related]
2. C57BL/6 and BALB/c bronchoalveolar macrophages respond differently to exercise. Su SH; Chen H; Jen CJ J Immunol; 2001 Nov; 167(9):5084-91. PubMed ID: 11673518 [TBL] [Abstract][Full Text] [Related]
3. Exercise enhances surfactant-mediated phagocytosis in bronchoalveolar macrophages. Su SH; Chen HI; Jen CJ Chin J Physiol; 2005 Dec; 48(4):210-6. PubMed ID: 16548423 [TBL] [Abstract][Full Text] [Related]
4. Corticosterone, prolactin and thyroid hormones as hormonal mediators of the stimulated phagocytic capacity of peritoneal macrophages after high-intensity exercise. Ortega E; Rodriguez MJ; Barriga C; Forner MA Int J Sports Med; 1996 Feb; 17(2):149-55. PubMed ID: 8833719 [TBL] [Abstract][Full Text] [Related]
5. Non-PKC DAG/phorbol-ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCgamma activate myelin phagocytosis by both. Cohen G; Makranz C; Spira M; Kodama T; Reichert F; Rotshenker S Glia; 2006 Apr; 53(5):538-50. PubMed ID: 16374778 [TBL] [Abstract][Full Text] [Related]
6. The effect of high intensity exercise on the functional capacity of equine pulmonary alveolar macrophages and BAL-derived lymphocytes. Raidal SL; Love DN; Bailey GD; Rose RJ Res Vet Sci; 2000 Jun; 68(3):249-53. PubMed ID: 10877971 [TBL] [Abstract][Full Text] [Related]
7. Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Makranz C; Cohen G; Baron A; Levidor L; Kodama T; Reichert F; Rotshenker S Neurobiol Dis; 2004 Mar; 15(2):279-86. PubMed ID: 15006698 [TBL] [Abstract][Full Text] [Related]
8. Stress-induced downregulation of macrophage phagocytic function is attenuated by exercise training in rats. Leandro CG; de Lima TM; Alba-Loureiro TC; do Nascimento E; Manhães de Castro R; de Castro CM; Pithon-Curi TC; Curi R Neuroimmunomodulation; 2007; 14(1):4-7. PubMed ID: 17700034 [TBL] [Abstract][Full Text] [Related]
9. Involvement of mitogen-activated protein kinases in class B scavenger receptor type I-induced phagocytosis of apoptotic cells. Osada Y; Shiratsuchi A; Nakanishi Y Exp Cell Res; 2006 Jun; 312(10):1820-30. PubMed ID: 16530182 [TBL] [Abstract][Full Text] [Related]
10. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Makranz C; Cohen G; Reichert F; Kodama T; Rotshenker S Glia; 2006 Mar; 53(4):441-8. PubMed ID: 16345030 [TBL] [Abstract][Full Text] [Related]
11. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Colucci-Guyon E; Niedergang F; Wallar BJ; Peng J; Alberts AS; Chavrier P Curr Biol; 2005 Nov; 15(22):2007-12. PubMed ID: 16303559 [TBL] [Abstract][Full Text] [Related]
12. Effects of age, sex and physical exercise on the phagocytic process of murine peritoneal macrophages. Ferrandez MD; De la Fuente M Acta Physiol Scand; 1999 May; 166(1):47-53. PubMed ID: 10372978 [TBL] [Abstract][Full Text] [Related]
13. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. van der Zanden EP; Snoek SA; Heinsbroek SE; Stanisor OI; Verseijden C; Boeckxstaens GE; Peppelenbosch MP; Greaves DR; Gordon S; De Jonge WJ Gastroenterology; 2009 Sep; 137(3):1029-39, 1039.e1-4. PubMed ID: 19427310 [TBL] [Abstract][Full Text] [Related]
14. Phagocytosis of bacteria is enhanced in macrophages undergoing nutrient deprivation. Martinet W; Schrijvers DM; Timmermans JP; Herman AG; De Meyer GR FEBS J; 2009 Apr; 276(8):2227-40. PubMed ID: 19302214 [TBL] [Abstract][Full Text] [Related]
15. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Renwick LC; Donaldson K; Clouter A Toxicol Appl Pharmacol; 2001 Apr; 172(2):119-27. PubMed ID: 11298498 [TBL] [Abstract][Full Text] [Related]
16. In vivo GM-CSF prevents dexamethasone suppression of killing of Aspergillus fumigatus conidia by bronchoalveolar macrophages. Brummer E; Maqbool A; Stevens DA J Leukoc Biol; 2001 Dec; 70(6):868-72. PubMed ID: 11739548 [TBL] [Abstract][Full Text] [Related]
17. NTP Toxicology and Carcinogenesis Studies of Talc (CAS No. 14807-96-6)(Non-Asbestiform) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1993 Sep; 421():1-287. PubMed ID: 12616290 [TBL] [Abstract][Full Text] [Related]
18. Effects of exercise on the immune response to cancer. Woods JA; Davis JM; Kohut ML; Ghaffar A; Mayer EP; Pate RR Med Sci Sports Exerc; 1994 Sep; 26(9):1109-15. PubMed ID: 7808244 [TBL] [Abstract][Full Text] [Related]
19. Immunological basis for susceptibility and resistance to pulmonary blastomycosis in mouse strains. Brummer E; Kethineni N; Stevens DA Cytokine; 2005 Oct; 32(1):12-9. PubMed ID: 16183299 [TBL] [Abstract][Full Text] [Related]