These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11200173)

  • 1. Escape from shock versus escape from shock accompanied by a visual stimulus in rats.
    Zieliński K; Savonenko AV
    Acta Neurobiol Exp (Wars); 2000; 60(4):457-65. PubMed ID: 11200173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do rats cope with the two-way escape problem in a homogeneous shuttle box?
    Savonenko AV; Brush FR; Zieliński K
    Acta Neurobiol Exp (Wars); 1999; 59(2):145-57. PubMed ID: 10497819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latency of the two-way avoidance response in rats: inhibition of delay.
    Zieliński K; Werka T; Nikolaev E
    Acta Neurobiol Exp (Wars); 1993; 53(4):535-45. PubMed ID: 8109262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inescapable shock and attention to internal versus external cues in a water discrimination escape task.
    Lee RK; Maier SF
    J Exp Psychol Anim Behav Process; 1988 Jul; 14(3):302-10. PubMed ID: 3404084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of long-term analgesia and the shuttle box escape deficit caused by inescapable shock.
    MacLennan AJ; Drugan RC; Hyson RL; Maier SF; Madden J; Barchas JD
    J Comp Physiol Psychol; 1982 Dec; 96(6):904-12. PubMed ID: 7153387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Septal lesions and active avoidance performance in rats: effects of differential intrabox cues.
    Numan R; Ward C; Clark J
    Physiol Behav; 1982 Sep; 29(3):489-93. PubMed ID: 7178255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus change influences escape performance: deficits induced by uncontrollable stress and by haloperidol.
    Anisman H; Zacharko RM
    Pharmacol Biochem Behav; 1982 Aug; 17(2):263-9. PubMed ID: 6890209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of signaling inescapable shock on subsequent escape learning: implications for theories of coping and "learned helplessness".
    Jackson RL; Minor TR
    J Exp Psychol Anim Behav Process; 1988 Oct; 14(4):390-400. PubMed ID: 3183579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock.
    Maier SF; Grahn RE; Kalman BA; Sutton LC; Wiertelak EP; Watkins LR
    Behav Neurosci; 1993 Apr; 107(2):377-88. PubMed ID: 8484901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory noise can prevent increased extracellular acetylcholine levels in the hippocampus in response to aversive stimulation.
    Thiel CM; Müller CP; Huston JP; Schwarting RK
    Brain Res; 2000 Nov; 882(1-2):112-9. PubMed ID: 11056190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting marked inhibition of periaqueductal gray-evoked defensive behaviors in inescapably-shocked rats.
    Quintino-dos-Santos JW; Müller CJ; Santos AM; Tufik S; Rosa CA; Schenberg LC
    Eur J Neurosci; 2014 Jan; 39(2):275-86. PubMed ID: 24188077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity wheel running reduces escape latency and alters brain monoamine levels after footshock.
    Dishman RK; Renner KJ; Youngstedt SD; Reigle TG; Bunnell BN; Burke KA; Yoo HS; Mougey EH; Meyerhoff JL
    Brain Res Bull; 1997; 42(5):399-406. PubMed ID: 9092882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photic cuing of escape by rats from an intense microwave field.
    Levinson DM; Grove AM; Clarke RL; Justesen DR
    Bioelectromagnetics; 1982; 3(1):105-16. PubMed ID: 7082382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of coping behavior of rats exposed to a long-term hardly escapable aversive stimulus: a possible depression model.
    Takaoka N; Hara C; Ogawa N
    Jpn J Pharmacol; 1988 Jun; 47(2):159-68. PubMed ID: 3199592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stressor predictability on escape learning and sleep in mice.
    Machida M; Yang L; Wellman LL; Sanford LD
    Sleep; 2013 Mar; 36(3):421-30. PubMed ID: 23449731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidepressants reduce inactivity during both inescapable shock administration and shuttle-box testing.
    Murua VS; Molina VA
    Eur J Pharmacol; 1991 Nov; 204(2):187-92. PubMed ID: 1806386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus.
    Shors TJ; Seib TB; Levine S; Thompson RF
    Science; 1989 Apr; 244(4901):224-6. PubMed ID: 2704997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Habituation and sensitization to an electrical shock in the crab Chasmagnathus. Effect of background illumination.
    Rakitin A; Tomsic D; Maldonado H
    Physiol Behav; 1991 Sep; 50(3):477-87. PubMed ID: 1800998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticosterone is involved in foot shock-induced inactivity in rats.
    Báez M; Siriczman I; Volosin M
    Physiol Behav; 1996 Sep; 60(3):795-801. PubMed ID: 8873253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in the behavioral consequences of inescapable footshocks depend on time since shock.
    Heinsbroek RP; Van Haaren F; Van de Poll NE; Steenbergen HL
    Physiol Behav; 1991 Jun; 49(6):1257-63. PubMed ID: 1896508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.