These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 11200457)

  • 1. [Mechanism of metabolic adaptation].
    Mel'nychuk DO; Mykhaĭlovskyĭ VO; Mel'nychuk SD
    Ukr Biokhim Zh (1999); 2000; 72(4-5):70-80. PubMed ID: 11200457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of low molecular weight metabolites as natural regulators of metabolism].
    Mel'nychuk DO; Mykhaĭlovs'kyĭ VO
    Ukr Biokhim Zh (1978); 1995; 67(3):84-92. PubMed ID: 7571078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].
    Logvinovich OS; Aksenova GE
    Zh Obshch Biol; 2013; 74(3):180-9. PubMed ID: 24163982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular mechanisms of homeostasis in human and animal tissues with disturbance of acid-base balance].
    Mel'nichuk DA
    Ukr Biokhim Zh (1978); 1980; 52(2):150-4. PubMed ID: 6770512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipids in mammalian hibernation and artificial hypobiosis.
    Kolomiytseva IK
    Biochemistry (Mosc); 2011 Dec; 76(12):1291-9. PubMed ID: 22150274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Metabolic system of acid-base homeostasis in the human and animal body].
    Mel'nichuk DA
    Ukr Biokhim Zh (1978); 1989; 61(3):3-21. PubMed ID: 2665258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of carbon dioxide on free radical processes as affected by artificial hypobiosis in rats].
    Mel'nychuk SD; Kuz'menko AI; Margitich VM; Govseeva NN; Gorid'ko TN; Hulaia NM
    Ukr Biokhim Zh (1978); 1998; 70(1):87-94. PubMed ID: 9848146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamines: metabolism and implications in human diseases.
    Moinard C; Cynober L; de Bandt JP
    Clin Nutr; 2005 Apr; 24(2):184-97. PubMed ID: 15784477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants.
    Tavladoraki P; Cona A; Federico R; Tempera G; Viceconte N; Saccoccio S; Battaglia V; Toninello A; Agostinelli E
    Amino Acids; 2012 Feb; 42(2-3):411-26. PubMed ID: 21874532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of artificial hibernation state on intensity of metabolic processes in rabbits].
    Mel'nychuk DO; Mel'nychuk SD; Silonova NB
    Ukr Biokhim Zh (1999); 2005; 77(1):84-8. PubMed ID: 16335274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic polyamines capture CO2 and accelerate extracellular bacterial CaCO3 formation.
    Yasumoto K; Yasumoto-Hirose M; Yasumoto J; Murata R; Sato S; Baba M; Mori-Yasumoto K; Jimbo M; Oshima Y; Kusumi T; Watabe S
    Mar Biotechnol (NY); 2014 Aug; 16(4):465-74. PubMed ID: 24493382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Potential adaptation of the gastrointestinal system. Existence of an enteropancreatic trophic axis, the role of hormones and polyamines].
    Dowling RH; Miazza BM
    Schweiz Med Wochenschr; 1985 Jul; 115(29):963-70. PubMed ID: 3931214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumour promoter mediated altered expression and regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in H-ras-transformed fibrosarcoma cell lines.
    Voskas D; Mader R; Lee J; Hurta RA
    Biochem Cell Biol; 2001; 79(1):69-81. PubMed ID: 11235918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological significance of dietary polyamines.
    Larqué E; Sabater-Molina M; Zamora S
    Nutrition; 2007 Jan; 23(1):87-95. PubMed ID: 17113752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of the energy status and putrescine transport in the maintenance of the intracellular pH homeostasis in the course of alkaline and acidic shifts in Escherichia coli].
    Tkachenko AG; Chudinov AA; Nagorskikh TG
    Mikrobiologiia; 1993; 62(1):37-45. PubMed ID: 8505912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ornithine decarboxylase suppression and polyamine depletion in the antiproliferative activity of polyamine analogs.
    Ghoda L; Basu HS; Porter CW; Marton LJ; Coffino P
    Mol Pharmacol; 1992 Aug; 42(2):302-6. PubMed ID: 1513327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of polyamine metabolism by translational control.
    Perez-Leal O; Merali S
    Amino Acids; 2012 Feb; 42(2-3):611-7. PubMed ID: 21811825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the 'anti-aging' effect of spermidine and other natural polyamines - a mini-review.
    Minois N
    Gerontology; 2014; 60(4):319-26. PubMed ID: 24481223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Distribution of polyamines in Escherichia coli and their role in potassium exchange between the cell and the environment during aerobiosis-anaerobiosis transitions].
    Tkachenko AG; Chudinov AA; Salakhetdinova OIa
    Mikrobiologiia; 1996; 65(1):10-4. PubMed ID: 8721604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine metabolism in reversible cerebral ischemia.
    Paschen W
    Cerebrovasc Brain Metab Rev; 1992; 4(1):59-88. PubMed ID: 1562452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.