BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11200472)

  • 1. [Features of fibronectin-dependent activation of ribosomal protein S6 kinase (S6K1 and S6K2)].
    Val'ovka TI; Filonenko VV; Velykyï MM; Drobot LB; Voterfill M; Matsuka HKh; Hut IT
    Ukr Biokhim Zh (1999); 2000; 72(3):31-7. PubMed ID: 11200472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal S6 kinase 2 inhibition by a potent C-terminal repressor domain is relieved by mitogen-activated protein-extracellular signal-regulated kinase kinase-regulated phosphorylation.
    Martin KA; Schalm SS; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7892-8. PubMed ID: 11108720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1.
    Phin S; Kupferwasser D; Lam J; Lee-Fruman KK
    Biochem J; 2003 Jul; 373(Pt 2):583-91. PubMed ID: 12713446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of S6K2, a novel kinase homologous to S6K1.
    Lee-Fruman KK; Kuo CJ; Lippincott J; Terada N; Blenis J
    Oncogene; 1999 Sep; 18(36):5108-14. PubMed ID: 10490847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of ribosomal S6 kinase 2 by effectors of the phosphoinositide 3-kinase pathway.
    Martin KA; Schalm SS; Richardson C; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7884-91. PubMed ID: 11108711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel cross talk between MEK and S6K2 in FGF-2 induced proliferation of SCLC cells.
    Pardo OE; Arcaro A; Salerno G; Tetley TD; Valovka T; Gout I; Seckl MJ
    Oncogene; 2001 Nov; 20(52):7658-67. PubMed ID: 11753643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway.
    Pende M; Um SH; Mieulet V; Sticker M; Goss VL; Mestan J; Mueller M; Fumagalli S; Kozma SC; Thomas G
    Mol Cell Biol; 2004 Apr; 24(8):3112-24. PubMed ID: 15060135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal S6 kinase signaling and the control of translation.
    Dufner A; Thomas G
    Exp Cell Res; 1999 Nov; 253(1):100-9. PubMed ID: 10579915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The polyproline-motif of S6K2: eIF5A translational dependence and importance for protein-protein interactions.
    Meneguello L; Barbosa NM; Pereira KD; Proença ARG; Tamborlin L; Simabuco FM; Iwai LK; Zanelli CF; Valentini SR; Luchessi AD
    J Cell Biochem; 2019 Apr; 120(4):6015-6025. PubMed ID: 30320934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical analysis of S6K1 and S6K2 expression in endometrial adenocarcinomas.
    Lyzogubov VV; Lytvyn DI; Dudchenko TM; Lubchenko NV; Pogrybniy PV; Nespryadko SV; Vinnitska AB; Usenko VS; Gout IT; Filonenko VV
    Exp Oncol; 2004 Dec; 26(4):287-93. PubMed ID: 15627061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogen-independent phosphorylation of S6K1 and decreased ribosomal S6 phosphorylation in senescent human fibroblasts.
    Zhang H; Hoff H; Marinucci T; Cristofalo VJ; Sell C
    Exp Cell Res; 2000 Aug; 259(1):284-92. PubMed ID: 10942600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SKAR is a specific target of S6 kinase 1 in cell growth control.
    Richardson CJ; Bröenstrup M; Fingar DC; Jülich K; Ballif BA; Gygi S; Blenis J
    Curr Biol; 2004 Sep; 14(17):1540-9. PubMed ID: 15341740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the general transcription factor Yin Yang 1 as a novel and specific binding partner for S6 kinase 2.
    Ismail HM; Myronova O; Tsuchiya Y; Niewiarowski A; Tsaneva I; Gout I
    Cell Signal; 2013 May; 25(5):1054-63. PubMed ID: 23403125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mGluR-dependent long-term depression is associated with increased phosphorylation of S6 and synthesis of elongation factor 1A but remains expressed in S6K-deficient mice.
    Antion MD; Hou L; Wong H; Hoeffer CA; Klann E
    Mol Cell Biol; 2008 May; 28(9):2996-3007. PubMed ID: 18316404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of S6K2 as a centrosome-located kinase.
    Rossi R; Pester JM; McDowell M; Soza S; Montecucco A; Lee-Fruman KK
    FEBS Lett; 2007 Aug; 581(21):4058-64. PubMed ID: 17678899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor association and tyrosine phosphorylation of S6 kinases.
    Rebholz H; Panasyuk G; Fenton T; Nemazanyy I; Valovka T; Flajolet M; Ronnstrand L; Stephens L; West A; Gout IT
    FEBS J; 2006 May; 273(9):2023-36. PubMed ID: 16640565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complex.
    Hannan KM; Thomas G; Pearson RB
    Biochem J; 2003 Mar; 370(Pt 2):469-77. PubMed ID: 12429015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of catalytic activity of S6 kinase 2 during cell cycle.
    Boyer D; Quintanilla R; Lee-Fruman KK
    Mol Cell Biochem; 2008 Jan; 307(1-2):59-64. PubMed ID: 17786541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase.
    Gwalter J; Wang ML; Gout I
    Int J Biochem Cell Biol; 2009 Apr; 41(4):828-33. PubMed ID: 18786649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S6 kinase 2 is bound to chromatin-nuclear matrix cellular fractions and is able to phosphorylate histone H3 at threonine 45 in vitro and in vivo.
    Ismail HM; Hurd PJ; Khalil MI; Kouzarides T; Bannister A; Gout I
    J Cell Biochem; 2014 Jun; 115(6):1048-62. PubMed ID: 23564320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.