These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 11201409)
1. Pliable polylactide plates for guided bone regeneration: manufacturing and in vitro. Kellomäki M; Paasimaa S; Törmälä P Proc Inst Mech Eng H; 2000; 214(6):615-29. PubMed ID: 11201409 [TBL] [Abstract][Full Text] [Related]
2. Bioabsorbable scaffolds for guided bone regeneration and generation. Kellomäki M; Niiranen H; Puumanen K; Ashammakhi N; Waris T; Törmälä P Biomaterials; 2000 Dec; 21(24):2495-505. PubMed ID: 11071599 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites. Niiranen H; Pyhältö T; Rokkanen P; Kellomäki M; Törmälä P J Biomed Mater Res A; 2004 Jun; 69(4):699-708. PubMed ID: 15162412 [TBL] [Abstract][Full Text] [Related]
4. Tissue response to partially in vitro predegraded poly-L-lactide implants. De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152 [TBL] [Abstract][Full Text] [Related]
5. Characterization of human primary osteoblast response on bioactive glass (BaG 13-93)- coated poly-L,DL-lactide (SR-PLA70) surface in vitro. Ruuttila P; Niiranen H; Kellomäki M; Törmälä P; Konttinen YT; Hukkanen M J Biomed Mater Res B Appl Biomater; 2006 Jul; 78(1):97-104. PubMed ID: 16292763 [TBL] [Abstract][Full Text] [Related]
6. Influence of copolymer composition of polylactide implants on cranial bone regeneration. Leiggener CS; Curtis R; Müller AA; Pfluger D; Gogolewski S; Rahn BA Biomaterials; 2006 Jan; 27(2):202-7. PubMed ID: 16026823 [TBL] [Abstract][Full Text] [Related]
7. A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery. Ignatius AA; Ohnmacht M; Claes LE; Kreidler J; Palm F J Biomed Mater Res; 2001; 58(5):564-9. PubMed ID: 11505432 [TBL] [Abstract][Full Text] [Related]
8. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. Suuronen R; Pohjonen T; Hietanen J; Lindqvist C J Oral Maxillofac Surg; 1998 May; 56(5):604-14; discussion 614-5. PubMed ID: 9590343 [TBL] [Abstract][Full Text] [Related]
9. Bone tissue engineering: treatment of cranial bone defects in rabbits using self-reinforced poly-L,D-lactide 96/4 sheets. Vesala AL; Kallioinen M; Törmälä P; Kellomäki M; Waris T; Ashammakhi N J Craniofac Surg; 2002 Sep; 13(5):607-13. PubMed ID: 12218785 [TBL] [Abstract][Full Text] [Related]
10. Strength retention of 70:30 poly(L-lactide-co-D,L-lactide) following real-time aging. Moser RC; McManus AJ; Riley SL; Thomas KA J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):56-63. PubMed ID: 16001395 [TBL] [Abstract][Full Text] [Related]
11. Processing, annealing and sterilisation of poly-L-lactide. Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884 [TBL] [Abstract][Full Text] [Related]
12. Processing and characterization of absorbable polylactide polymers for use in surgical implants. Andriano KP; Pohjonen T; Törmälä P J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072 [TBL] [Abstract][Full Text] [Related]
13. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. Gogolewski S; Mainil-Varlet P; Dillon JG J Biomed Mater Res; 1996 Oct; 32(2):227-35. PubMed ID: 8884500 [TBL] [Abstract][Full Text] [Related]
14. Fibre reinforced bioresorbable composites for spinal surgery. Huttunen M; Ashammakhi N; Törmälä P; Kellomäki M Acta Biomater; 2006 Sep; 2(5):575-87. PubMed ID: 16807156 [TBL] [Abstract][Full Text] [Related]
15. An experimental study of heat adaptation of bioabsorbable craniofacial meshes and plates. Pietrzak WS; Eppley BL J Craniofac Surg; 2007 May; 18(3):540-5. PubMed ID: 17538315 [TBL] [Abstract][Full Text] [Related]
16. Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation. Weir NA; Buchanan FJ; Orr JF; Farrar DF; Dickson GR Proc Inst Mech Eng H; 2004; 218(5):321-30. PubMed ID: 15532997 [TBL] [Abstract][Full Text] [Related]
18. Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Weir NA; Buchanan FJ; Orr JF; Dickson GR Proc Inst Mech Eng H; 2004; 218(5):307-19. PubMed ID: 15532996 [TBL] [Abstract][Full Text] [Related]
19. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
20. [The degradation performance of bioabsorbable acylchitin fiber reinforced PLA composite materials in vitro and in vivo]. Chen C; Cheng H; Sun K; Wu R; Jiang R Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):117-21. PubMed ID: 12557760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]